Zusammenfassung
Nichtbakterielle Knochenentzündungen (NBO) manifestieren sich als solitäres Krankheitsbild
oder können in etwa 20% der Fälle mit weiteren inflammatorischen Erkankungen vergesellschaftet
sein. Am häufigsten werden assoziiert entzündliche Hauterkrankungen oder chronisch-entzündliche
Darmerkrankungen (IBD) gefunden. Die Variabilität dieser Krankheitsbilder erscheint
groß, vergleichbar mit den idiopathischen Arthritiden. Darüber hinaus sind mittlerweile
syndromale Symptomenkomplexe mit sterilen Osteitiden bekannt geworden, die sich bereits
im Säuglingsalter manifestieren, und die genetisch identifiziert werden konnten. Diese
werden heutzutage den sogenannten Autoinflammations-Erkrankungen zugeordnet. Rekurrierende
Episoden – ausgelöst durch Entzündungsmechanismen der angeborenen Immunität, Fehlen
von spezifischen Autoantikörpern sowie das Fehlen von exogenen Auslösern – sind Kriterien
für diese Definition. NBO sind bislang größtenteils weder pathophysiologisch noch
genetisch definiert. Anhand der verfügbaren Literatur und eigener Befunde zeigt diese
Arbeit auf, dass sterile Osteitiden auch ohnen syndromalen Kontext wohl als auto-inflammatorisch
bezeichnet werden können. Verschiedene klinische Verlaufsformen werden anhand von
Entzündungs-Laborparametern und anhand der verfügbaren genetischen Befunde dargestellt.
Angesichts der Dynamik und der neuen Erkenntnisse, die heute die molekularbiologische
Forschung täglich vorwärts treiben, erhebt sich aber auch die Frage, ob Autoimmunität
und Autoinflammation tatsächlich zu trennen sind. Es bleibt spannend, welche der nichtbakteriellen
Osteitiden und welche der anderen rheumatischen Erkrankungen wo einzuordnen sein werden.
Es könnte sich zeigen, dass etliche bislang ätiologisch unklare Krankheitsbilder dem
rheumatisch-inflammatorischen Formenkreis zugerechnet werden müssen.
Abstract
Non-bacterial osteitis (NBO) can be observed as a single symptom of disease or may
be associated with other inflammatory conditions, mainly of the skin and/or bone.
The variability of clinical presentations seems comparable to rheumatic arthritis.
Meanwhile sterile osteitis was described as a feature of genetically defined inflammatory
syndromes with manifestations in very early childhood. These are defined as autoinflammatory
diseases. Recurrent episodes triggered by innate immune mechanisms, in the absence
of specific autoantibodies and without exogeneous triggers, are criteria for this
classification. Non-syndromal non-bacterial inflammatory bone lesions are neither
pathophysiologically nor genetically well defined. With the help of the current literature
on this unexplored field and on the basis of our own clinical and laboratory findings,
it can be shown that also NBO without syndromal features may be classified as auto-inflammatory
disorders. Different clinical presentations are highlighted in view of inflammation
parameters and genetic findings – as far as available. The current impetus and vast
new findings in this field pose again and again the question whether auto-immunity
and auto-inflammation need to be separated from each other. Whether or not NBO and/or
other rheumatic diseases will have to be (re)classified remains an exciting topic.
Therefore, in the near future, so far non-defined disorders may be diagnosed as rheumatic-inflammatory
conditions.
Schlüsselwörter
Osteitis - CRMO - SAPHO - Inflammation
Key words
osteitis - CRMO - SAPHO - inflammation
Literatur
- 1
Aksentijevich I, Masters SL, Ferguson PJ. et al .
An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist.
N Engl J Med.
2009 Jun 4;
360
(23)
2426-2437
- 2
Rigante D.
Autoinflammatory syndromes behind the scenes of recurrent fevers in children.
Med Sci Monit.
2009 Aug;
15
(8)
RA179-RA187
- 3
Lamprecht P, Gross WL.
Autoinflammatory syndromes.
Internist (Berl).
2009 Jun;
50
(6)
676-684
- 4
Jansson A, Renner ED, Ramser J. et al .
Classification of non-bacterial osteitis: retrospective study of clinical, immunological
and genetic aspects in 89 patients.
Rheumatology (Oxford).
2007 Jan;
46
(1)
154-160
- 5
Jansson AF, Müller TH, Gliera L. et al .
Clinical score for nonbacterial osteitis in children and adults.
Arthritis Rheum.
2009;
60
(4)
1152-1159
- 6
Girschick HJ, Huppertz HI, Harmsen D. et al .
Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology
and microbial testing.
Hum Pathol.
1999;
30
(1)
59-65
- 7
Ferguson PJ, Bing X, Vasef MA. et al .
A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder
chronic multifocal osteomyelitis.
Bone.
2006 Jan;
38
(1)
41-47
- 8
Majeed HA, El-Shanti H, Al-Rimawi H. et al .
On mice and men: An autosomal recessive syndrome of chronic recurrent multifocal osteomyelitis
and congenital dyserythropoietic anemia.
J Pediatr.
2000 Sep;
137
(3)
441-442
- 9
Tlougan BE, Podjasek JO, O’Haver J. et al .
Chronic recurrent multifocal osteomyelitis (CRMO) and synovitis, acne, pustulosis,
hyperostosis, and osteitis (SAPHO) syndrome with associated neutrophilic dermatoses:
a report of seven cases and review of the literature.
Pediatr Dermatol.
2009 Sep-Oct;
26
(5)
497-505
- 10
Girschick HJ, Raab P, Surbaum S. et al .
Chronic non-bacterial osteomyelitis in children.
Ann Rheum Dis.
2005 Feb;
64
(2)
279-285
- 11
Huber AM, Lam PY, Duffy CM. et al .
Chronic recurrent multifocal osteomyelitis: clinical outcomes after more than five
years of follow-up.
J Pediatr.
2002 Aug;
141
(2)
198-203
- 12
Lin GG, Li JM.
IgG subclass serum levels in systemic lupus erythematosus patients.
Clin Rheumatol.
2009 Nov;
28
(11)
1315-1318
- 13
Blaschek A, Lohse P, Huss K. et al .
Concurrent TNFRSF1A R92Q and pyrin E230K mutations in a child with multiple sclerosis.
Mult Scler.
2010 Dec;
16
(12)
1517-1520
Epub 2010 Sep 27
- 14
Morbach H, Dick A, Beck C. et al .
Association of chronic non-bacterial osteomyelitis with Crohn's disease but not with
CARD15 gene variants.
Rheumatol Int.
2010 Mar;
30
(5)
617-621
Epub 2009 Jul 5
- 15
Golla A, Jansson A, Ramser J. et al .
Chronic recurrent multifocal osteomyelitis (CRMO): evidence for a susceptibility gene
located on chromosome 18q21.3-18q22.
Meindl A. Eur J Hum Genet.
2002 Mar;
10
(3)
217-221
- 16
Vittecoq O, Said LA, Michot C. et al .
Evolution of chronic recurrent multifocal osteitis toward spondylarthropathy over
the long term.
Arthritis Rheum.
2000 Jan;
43
(1)
109-119
- 17
Hurtado-Nedelec M, Chollet-Martin S, Nicaise-Roland P. et al .
Characterization of the immune response in the synovitis, acne, pustulosis, hyperostosis,
osteitis (SAPHO) syndrome.
Rheumatology (Oxford).
2008 Aug;
47
(8)
1160-1167
Epub 2008 Jun 17.
- 18
Assmann G, Kueck O, Kirchhoff T. et al .
Efficacy of antibiotic therapy for SAPHO syndrome is lost after its discontinuation:
an interventional study.
Arthritis Res Ther.
2009 Oct 9;
11
(5)
R140
- 19
Assmann G, Wagner AD, Monika M. et al .
Single-nucleotide polymorphisms p53 G72C and Mdm2 T309G in patients with psoriasis,
psoriatic arthritis, and SAPHO syndrome.
Rheumatol Int.
2010 Aug;
30
(10)
1273-1276
- 20
Ferguson PJ, Lokuta MA, El-Shanti HI. et al .
Neutrophil dysfunction in a family with a SAPHO syndrome-like phenotype.
Arthritis Rheum.
2008 Oct;
58
(10)
3264-3269
- 21
Beck C, Morbach H, Beer M. et al .
Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the
first year of anti-inflammatory treatment.
Arthritis Res Ther.
2010;
12
(2)
R74
- 22
Jansson A, Borte M, Böschow G. et al .
Nichtbakterielle Osteitis des Kindes- und Erwachsenenalters. Konsensusstatement des
8. Wörlitzer Expertengespräches 2005 für die Deutsche Gesellschaft für Kinder- und
Jugendrheumatologie.
Monatsschrift Kinderheilkunde.
2006;
154
(8)
831-833
- 23
Miettunen PM, Wei X, Kaura D. et al .
Dramatic pain relief and resolution of bone inflammation following pamidronate in
9 pediatric patients with persistent chronic recurrent multifocal osteomyelitis (CRMO).
Pediatr Rheumatol Online J.
2009 Jan 12;
7
2
- 24
Gleeson H, Wiltshire E, Briody J. et al .
Childhood chronic recurrent multifocal osteomyelitis: pamidronate therapy decreases
pain and improves vertebral shape.
J Rheumatol.
2008 Apr;
35
(4)
707-712
- 25
Colina M, La Corte R, Trotta F.
Sustained remission of SAPHO syndrome with pamidronate: a follow-up of fourteen cases
and a review of the literature.
Clin Exp Rheumatol.
2009 Jan-Feb;
27
(1)
112-115
- 26
Deutschmann A, Mache CJ, Bodo K. et al .
Successful treatment of chronic recurrent multifocal osteomyelitis with tumor necrosis
factor-alpha blockage.
Pediatrics.
2005 Nov;
116
(5)
1231-1233
- 27
Wagner AD, Andresen J, Jendro MC. et al .
Sustained response to tumor necrosis factor alpha-blocking agents in two patients
with SAPHO syndrome.
Arthritis Rheum.
2002 Jul;
46
(7)
1965-1968
- 28
Eleftheriou D, Gerschman T, Sebire N. et al .
Biologic therapy in refractory chronic non-bacterial osteomyelitis of childhood.
Rheumatology (Oxford).
2010 Aug;
49
(8)
1505-1512
Epub 2010 Apr 29
- 29
Ben Abdelghani K, Dran DG, Gottenberg JE. et al .
Tumor necrosis factor-alpha blockers in SAPHO syndrome.
J Rheumatol.
2010 Aug 1;
37
(8)
1699-1704
Epub 2010 May 15.
- 30
Lindor NM, Arsenault TM, Solomon H. et al .
A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum,
and acne: PAPA syndrome.
Mayo Clin Proc.
1997 Jul;
72
(7)
611-615
- 31
Grosse J, Chitu V, Marquardt A. et al .
Mutation of mouse MAYP/PSTPIP2 causes a macrophage autoinflammatory disease.
Blood.
2006 Apr 15;
107
(8)
3350-3358
- 32
Brenner M, Ruzicka T, Plewig G. et al .
Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum
and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra.
Br J Dermatol.
2009 Nov;
161
(5)
1199-1201
- 33
Tofteland ND, Shaver TS.
Clinical efficacy of etanercept for treatment of PAPA syndrome.
J Clin Rheumatol.
2010 Aug;
16
(5)
244-245
- 34
Majeed HA, El-Shanti H, Al-Rimawi H. et al .
On mice and men: An autosomal recessive syndrome of chronic recurrent multifocal osteomyelitis
and congenital dyserythropoietic anemia.
J Pediatr.
2000 Sep;
137
(3)
441-442
- 35
Ferguson PJ, Chen S, Tayeh MK. et al .
Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent
multifocalosteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome).
J Med Genet.
2005 Jul;
42
(7)
551-557
- 36
Al-Mosawi ZS, Al-Saad KK, Ijadi-Maghsoodi R. et al .
A splice site mutation confirms the role of LPIN2 in Majeed syndrome.
Arthritis Rheum.
2007 Mar;
56
(3)
960-964
- 37
Beck C, Morbach H, Stenzel M. et al .
Hypophosphatasia.
Klin Padiatr.
2009 Jul-Aug;
221
(4)
219-226
Epub 2009 Jul 23. Review
- 38
Mornet E, Beck C, Bloch-Zupan A. et al .
Clinical utility gene card for: hypophosphatasia.
Eur J Hum Genet.
2011 Mar;
19
(3)
DOI: doi: 10.1038/ejhg.2010.170. Epub 2010 Oct 27
- 39
Beck C, Morbach H, Richl P. et al .
How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or
chronic inflammatory joint diseases?.
Rheumatol Int.
2009 Jan;
29
(3)
229-238
Epub 2008 Sep 28. Review
- 40
de Vernejoul MC, Kornak U.
Heritable sclerosing bone disorders: presentation and new molecular mechanisms.
Ann N Y Acad Sci.
2010 Mar;
1192
269-277
- 41
Jansson AF, Grote V.
for the ESPED Study Group
Nonbacterial osteitis in children: data of a German Incidence Surveillance Study.
Acta Paediatr.
2011 Feb 25;
DOI: doi: 10.1111/j.1651-2227.2011.02205.x
Korrespondenzadresse
PD Dr. med. Dr. Annette Friederike Jansson
Oberärztin Rheumatologie
Dr. von Haunersches
Kinderspital
Lindwurmstraße 4
80337 München
Telefon: + 49/089/5160 7848
Fax: + 49/089/5160 3964
eMail: annette.jansson@med.uni-muenchen.de