Semin Neurol 2011; 31(2): 216-225
DOI: 10.1055/s-0031-1277991
© Thieme Medical Publishers

Post-Cardiac Arrest Encephalopathy

Wei Xiong1 , Robert E. Hoesch2 , Romergryko G. Geocadin1
  • 1Department of Neurology, Department of Neurosurgery, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
  • 2Neurosciences Critical Care; Department of Neurology, University of Utah School of Medicine, Clinical Neurosciences Center, Salt Lake City, Utah
Further Information

Publication History

Publication Date:
17 May 2011 (online)

ABSTRACT

Brain injury continues to be a leading cause of mortality and morbidity in patients resuscitated after cardiac arrest. During periods of hypoxia and ischemia, numerous mechanisms contribute to the initial and secondary injury of the brain. Though many drugs and therapies have been evaluated for neuroprotection, only therapeutic hypothermia has been proven to be effective. Accurate prognostication after cardiac arrest is essential, and can be achieved with careful neurologic examination and several ancillary tests utilizing neurophysiology, neuroimaging, and biochemistry. Practice guidelines are now available for prognostication and postresuscitation care, with emphasis on improving survival and quality of life. Also reviewed are a wide spectrum of postarrest neurologic complications and their targeted treatments.

REFERENCES

  • 1 Geocadin R G, Koenig M A, Jia X, Stevens R D, Peberdy M A. Management of brain injury after resuscitation from cardiac arrest.  Neurol Clin. 2008;  26 (2) 487-506, ix ix
  • 2 Zheng Z J, Croft J B, Giles W H, Mensah G A. Sudden cardiac death in the United States, 1989 to 1998.  Circulation. 2001;  104 (18) 2158-2163
  • 3 Geocadin R G, Buitrago M M, Torbey M T, Chandra-Strobos N, Williams M A, Kaplan P W. Neurologic prognosis and withdrawal of life support after resuscitation from cardiac arrest.  Neurology. 2006;  67 (1) 105-108
  • 4 Neumar R W, Nolan J P, Adrie C et al.. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, Interamerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and The Stroke Council.  Circulation. 2008;  118 (23) 2452-2483
  • 5 Hypothermia after Cardiac Arrest Study Group . Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.  N Engl J Med. 2002;  346 (8) 549-556
  • 6 Bernard S A, Gray T W, Buist M D et al.. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.  N Engl J Med. 2002;  346 (8) 557-563
  • 7 Schiff N D, Giacino J T, Kalmar K et al.. Behavioural improvements with thalamic stimulation after severe traumatic brain injury.  Nature. 2007;  448 (7153) 600-603
  • 8 Peberdy M A, Callaway C W, Neumar R W et al.. Part 9: Post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.  Circulation. 2010;  122 (18, Suppl 3) S768-S786
  • 9 Wagner IV S R, Lanier W L. Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats.  Anesthesiology. 1994;  81 (6) 1516-1526
  • 10 Hammer M D, Krieger D W. Hypothermia for acute ischemic stroke: not just another neuroprotectant.  Neurologist. 2003;  9 (6) 280-289
  • 11 Obrenovitch T P, Garofalo O, Harris R J et al.. Brain tissue concentrations of ATP, phosphocreatine, lactate, and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion.  J Cereb Blood Flow Metab. 1988;  8 (6) 866-874
  • 12 Lee J M, Grabb M C, Zipfel G J, Choi D W. Brain tissue responses to ischemia.  J Clin Invest. 2000;  106 (6) 723-731
  • 13 Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic and reperfusion injury.  Stroke. 2005;  36 (12) 2781-2790
  • 14 Jean W C, Spellman S R, Nussbaum E S, Low W C. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon.  Neurosurgery. 1998;  43 (6) 1382-1396 discussion 1396-1397
  • 15 Hossmann K A. Ischemia-mediated neuronal injury.  Resuscitation. 1993;  26 (3) 225-235
  • 16 Ames III A, Wright R L, Kowada M, Thurston J M, Majno G. Cerebral ischemia. II. The no-reflow phenomenon.  Am J Pathol. 1968;  52 (2) 437-453
  • 17 Blomqvist P, Wieloch T. Ischemic brain damage in rats following cardiac arrest using a long-term recovery model.  J Cereb Blood Flow Metab. 1985;  5 (3) 420-431
  • 18 Smith M L, Auer R N, Siesjö B K. The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia.  Acta Neuropathol. 1984;  64 (4) 319-332
  • 19 Takemoto O, Tomimoto H, Yanagihara T. Induction of c-fos and c-jun gene products and heat shock protein after brief and prolonged cerebral ischemia in gerbils.  Stroke. 1995;  26 (9) 1639-1648
  • 20 Plum M DF, Posner MDJB. Diagnosis of Stupor and Coma. Philadelphia: F.A. Davis Company; 1976
  • 21 Berek K, Jeschow M, Aichner F. The prognostication of cerebral hypoxia after out-of-hospital cardiac arrest in adults.  Eur Neurol. 1997;  37 (3) 135-145
  • 22 Jennett B, Adams J H, Murray L S, Graham D I. Neuropathology in vegetative and severely disabled patients after head injury.  Neurology. 2001;  56 (4) 486-490
  • 23 Quality Standards Subcommittee of the American Academy of Neurology .Assessment and management of patients in the persistent vegetative state: AAN Practice Guidelines. St. Paul, MN: American Academy of Neurology; 1995
  • 24 Giacino J T, Ashwal S, Childs N et al.. The minimally conscious state: definition and diagnostic criteria.  Neurology. 2002;  58 (3) 349-353
  • 25 Snyder B D, Hauser W A, Loewenson R B, Leppik I E, Ramirez-Lassepas M, Gumnit R J. Neurologic prognosis after cardiopulmonary arrest: III. Seizure activity.  Neurology. 1980;  30 (12) 1292-1297
  • 26 Lu-Emerson C, Khot S. Neurological sequelae of hypoxic-ischemic brain injury.  NeuroRehabilitation. 2010;  26 (1) 35-45
  • 27 Wijdicks E F, Hijdra A, Young G B, Bassetti C L, Wiebe S. Quality Standards Subcommittee of the American Academy of Neurology . Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.  Neurology. 2006;  67 (2) 203-210
  • 28 Young G B, Gilbert J J, Zochodne D W. The significance of myoclonic status epilepticus in postanoxic coma.  Neurology. 1990;  40 (12) 1843-1848
  • 29 Wijdicks E F, Parisi J E, Sharbrough F W. Prognostic value of myoclonus status in comatose survivors of cardiac arrest.  Ann Neurol. 1994;  35 (2) 239-243
  • 30 Lance J W, Adams R D. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy.  Brain. 1963;  86 111-136
  • 31 Khot S, Tirschwell D L. Long-term neurological complications after hypoxic-ischemic encephalopathy.  Semin Neurol. 2006;  26 (4) 422-431
  • 32 Diamond A L, Callison R C, Shokri J, Cruz-Flores S, Kinsella L J. Paroxysmal sympathetic storm.  Neurocrit Care. 2005;  2 (3) 288-291
  • 33 Hawker K, Lang A E. Hypoxic-ischemic damage of the basal ganglia. Case reports and a review of the literature.  Mov Disord. 1990;  5 (3) 219-224
  • 34 Bhatt M H, Obeso J A, Marsden C D. Time course of postanoxic akinetic-rigid and dystonic syndromes.  Neurology. 1993;  43 (2) 314-317
  • 35 Peskine A, Rosso C, Picq C, Caron E, Pradat-Diehl P. Neurological sequelae after cerebral anoxia.  Brain Inj. 2010;  24 (5) 755-761
  • 36 Cronberg T, Lilja G, Rundgren M, Friberg H, Widner H. Long-term neurological outcome after cardiac arrest and therapeutic hypothermia.  Resuscitation. 2009;  80 (10) 1119-1123
  • 37 Roine R O, Kajaste S, Kaste M. Neuropsychological sequelae of cardiac arrest.  JAMA. 1993;  269 (2) 237-242
  • 38 Sasson C, Rogers M A, Dahl J, Kellermann A L. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis.  Circ Cardiovasc Qual Outcomes. 2010;  3 (1) 63-81
  • 39 Nichol G, Thomas E, Callaway C W Resuscitation Outcomes Consortium Investigators et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome.  JAMA. 2008;  300 (12) 1423-1431
  • 40 Saklayen M, Liss H, Markert R. In-hospital cardiopulmonary resuscitation. Survival in 1 hospital and literature review.  Medicine (Baltimore). 1995;  74 (4) 163-175
  • 41 Young G B. Clinical practice. Neurologic prognosis after cardiac arrest.  N Engl J Med. 2009;  361 (6) 605-611
  • 42 Levy D E, Caronna J J, Singer B H, Lapinski R H, Frydman H, Plum F. Predicting outcome from hypoxic-ischemic coma.  JAMA. 1985;  253 (10) 1420-1426
  • 43 Zandbergen E G, Hijdra A, Koelman J H PROPAC Study Group et al. Prediction of poor outcome within the first 3 days of postanoxic coma.  Neurology. 2006;  66 (1) 62-68
  • 44 Al Thenayan E, Savard M, Sharpe M, Norton L, Young B. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest.  Neurology. 2008;  71 (19) 1535-1537
  • 45 Robinson L R, Micklesen P J, Tirschwell D L, Lew H L. Predictive value of somatosensory evoked potentials for awakening from coma.  Crit Care Med. 2003;  31 (3) 960-967
  • 46 Lee Y C, Phan T G, Jolley D J, Castley H C, Ingram D A, Reutens D C. Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: a meta-analysis.  Neurology. 2010;  74 (7) 572-580
  • 47 Madl C, Kramer L, Domanovits H et al.. Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment.  Crit Care Med. 2000;  28 (3) 721-726
  • 48 Zandbergen E G, Koelman J H, de Haan R J, Hijdra A. PROPAC-Study Group . SSEPs and prognosis in postanoxic coma: only short or also long latency responses?.  Neurology. 2006;  67 (4) 583-586
  • 49 Tiainen M, Kovala T T, Takkunen O S, Roine R O. Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia.  Crit Care Med. 2005;  33 (8) 1736-1740
  • 50 Guérit J M, de Tourtchaninoff M, Soveges L, Mahieu P. The prognostic value of three-modality evoked potentials (TMEPs) in anoxic and traumatic comas.  Neurophysiol Clin. 1993;  23 (2-3) 209-226
  • 51 Chen R, Bolton C F, Young B. Prediction of outcome in patients with anoxic coma: a clinical and electrophysiologic study.  Crit Care Med. 1996;  24 (4) 672-678
  • 52 Young G B, Kreeft J H, McLachlan R S, Demelo J. EEG and clinical associations with mortality in comatose patients in a general intensive care unit.  J Clin Neurophysiol. 1999;  16 (4) 354-360
  • 53 Rossetti A O, Oddo M, Logroscino G, Kaplan P W. Prognostication after cardiac arrest and hypothermia: a prospective study.  Ann Neurol. 2010;  67 (3) 301-307
  • 54 Young G B. The EEG in coma.  J Clin Neurophysiol. 2000;  17 (5) 473-485
  • 55 Geraghty M C, Torbey M T. Neuroimaging and serologic markers of neurologic injury after cardiac arrest.  Neurol Clin. 2006;  24 (1) 107-121, vii vii
  • 56 Torbey M T, Selim M, Knorr J, Bigelow C, Recht L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest.  Stroke. 2000;  31 (9) 2163-2167
  • 57 Wijman C A, Mlynash M, Caulfield A F et al.. Prognostic value of brain diffusion-weighted imaging after cardiac arrest.  Ann Neurol. 2009;  65 (4) 394-402
  • 58 Berek K, Lechleitner P, Luef G et al.. Early determination of neurological outcome after prehospital cardiopulmonary resuscitation.  Stroke. 1995;  26 (4) 543-549
  • 59 DeVolder A G, Goffinet A M, Bol A, Michel C, de Barsy T, Laterre C. Brain glucose metabolism in postanoxic syndrome. Positron emission tomographic study.  Arch Neurol. 1990;  47 (2) 197-204
  • 60 Schaafsma A, de Jong B M, Bams J L, Haaxma-Reiche H, Pruim J, Zijlstra J G. Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy.  J Neurol Sci. 2003;  210 (1-2) 23-30
  • 61 Pfeifer R, Börner A, Krack A, Sigusch H H, Surber R, Figulla H R. Outcome after cardiac arrest: predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale.  Resuscitation. 2005;  65 (1) 49-55
  • 62 Fogel W, Krieger D, Veith M et al.. Serum neuron-specific enolase as early predictor of outcome after cardiac arrest.  Crit Care Med. 1997;  25 (7) 1133-1138
  • 63 Martens P, Raabe A, Johnsson P. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia.  Stroke. 1998;  29 (11) 2363-2366
  • 64 Wong K C. Physiology and pharmacology of hypothermia.  West J Med. 1983;  138 (2) 227-232
  • 65 Erecinska M, Thoresen M, Silver I A. Effects of hypothermia on energy metabolism in mammalian central nervous system.  J Cereb Blood Flow Metab. 2003;  23 (5) 513-530
  • 66 Sick T J, Xu G, Pérez-Pinzón M A. Mild hypothermia improves recovery of cortical extracellular potassium ion activity and excitability after middle cerebral artery occlusion in the rat.  Stroke. 1999;  30 (11) 2416-2421 discussion 2422
  • 67 Busto R, Globus M Y, Dietrich W D, Martinez E, Valdés I, Ginsberg M D. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain.  Stroke. 1989;  20 (7) 904-910
  • 68 Harada K, Maekawa T, Tsuruta R et al.. Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion.  J Neurosci Res. 2002;  67 (5) 664-669
  • 69 Globus M Y, Alonso O, Dietrich W D, Busto R, Ginsberg M D. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia.  J Neurochem. 1995;  65 (4) 1704-1711
  • 70 Zheng Z, Yenari M A. Post-ischemic inflammation: molecular mechanisms and therapeutic implications.  Neurol Res. 2004;  26 (8) 884-892
  • 71 Fukuda H, Tomimatsu T, Watanabe N et al.. Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia-ischemia.  Brain Res. 2001;  910 (1-2) 187-191
  • 72 Niwa M, Hara A, Iwai T et al.. Relationship between magnitude of hypothermia during ischemia and preventive effect against post-ischemic DNA fragmentation in the gerbil hippocampus.  Brain Res. 1998;  794 (2) 338-342
  • 73 Hachimi-Idrissi S, Corne L, Ebinger G, Michotte Y, Huyghens L. Mild hypothermia induced by a helmet device: a clinical feasibility study.  Resuscitation. 2001;  51 (3) 275-281
  • 74 Holzer M, Bernard S A, Hachimi-Idrissi S, Roine R O, Sterz F, Müllner M. Collaborative Group on Induced Hypothermia for Neuroprotection After Cardiac Arrest . Hypothermia for neuroprotection after cardiac arrest: systematic review and individual patient data meta-analysis.  Crit Care Med. 2005;  33 (2) 414-418
  • 75 Abella B S, Rhee J W, Huang K N, Vanden Hoek T L, Becker L B. Induced hypothermia is underused after resuscitation from cardiac arrest: a current practice survey.  Resuscitation. 2005;  64 (2) 181-186
  • 76 Merchant R M, Soar J, Skrifvars M B et al.. Therapeutic hypothermia utilization among physicians after resuscitation from cardiac arrest.  Crit Care Med. 2006;  34 (7) 1935-1940
  • 77 Laver S R, Padkin A, Atalla A, Nolan J P. Therapeutic hypothermia after cardiac arrest: a survey of practice in intensive care units in the United Kingdom.  Anaesthesia. 2006;  61 (9) 873-877
  • 78 Wolfrum S, Radke P W, Pischon T, Willich S N, Schunkert H, Kurowski V. Mild therapeutic hypothermia after cardiac arrest - a nationwide survey on the implementation of the ILCOR guidelines in German intensive care units.  Resuscitation. 2007;  72 (2) 207-213
  • 79 Caviness J N, Brown P. Myoclonus: current concepts and recent advances.  Lancet Neurol. 2004;  3 (10) 598-607
  • 80 Frucht S, Fahn S. The clinical spectrum of posthypoxic myoclonus.  Mov Disord. 2000;  15 (Suppl 1) 2-7
  • 81 Datta S, Hart G K, Opdam H, Gutteridge G, Archer J. Post-hypoxic myoclonic status: the prognosis is not always hopeless.  Crit Care Resusc. 2009;  11 (1) 39-41
  • 82 Thömke F, Weilemann S L. Poor prognosis despite successful treatment of postanoxic generalized myoclonus.  Neurology. 2010;  74 (17) 1392-1394
  • 83 Krauss G L, Bergin A, Kramer R E, Cho Y W, Reich S G. Suppression of post-hypoxic and post-encephalitic myoclonus with levetiracetam.  Neurology. 2001;  56 (3) 411-412
  • 84 Baguley I J. Autonomic complications following central nervous system injury.  Semin Neurol. 2008;  28 (5) 716-725
  • 85 Morris H R, Howard R S, Brown P. Early myoclonic status and outcome after cardiorespiratory arrest.  J Neurol Neurosurg Psychiatry. 1998;  64 (2) 267-268
  • 86 Arnoldus E P, Lammers G J. Postanoxic coma: good recovery despite myoclonus status.  Ann Neurol. 1995;  38 (4) 697-698
  • 87 Harper S J, Wilkes R G. Posthypoxic myoclonus (the Lance-Adams syndrome) in the intensive care unit.  Anaesthesia. 1991;  46 (3) 199-201
  • 88 Fugate J E, Wijdicks E F, Mandrekar J et al.. Predictors of neurologic outcome in hypothermia after cardiac arrest.  Ann Neurol. 2010;  68 (6) 907-914

Romergryko G GeocadinM.D. 

Director, Neurosciences Critical Care Division; Department of Neurology, Department of Anesthesiology and Critical Care Medicine

Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287

Email: rgeocad1@jhmi.edu

    >