Zusammenfassung
Die entscheidende Triebkraft für den Gallefluss ist der ATP-abhängige Transport von
Gallebestandteilen (Gallensäuren, reduziertes Glutathion, Bilirubinglucuronide u. a.)
über die kanalikuläre Hepatozytenmembran in die Galle. Die funktionelle Charakterisierung,
die Klonierung und die Lokalisation von Transportproteinen der Hepatozytenmembran
haben entscheidend zum molekularen Verständnis von Gallefluss und intrahepatischer
Cholestase beigetragen. Genetische Defekte in der menschlichen Leber und bei Ratten,
Genausschaltungen bei Mäusen und die direkte Hemmung von Transportproteinen haben
gezeigt, dass die Konjugatexportpumpe MRP2 (Multidrug resistance protein 2; ABCC2)
und die Gallensalzexportpumpe BSEP (Bile salt export pump; ABCB11) den wichtigsten
Beitrag zum Gallensäure-unabhängigen bzw. zum Gallensäure-abhängigen Gallefluss leisten.
In der menschlichen Leber führen bestimmte genetische Varianten zum Verlust der Transportaktivität
der Gallensalzexportpumpe BSEP und zur schweren intrahepatischen Cholestase. Effluxtransporter
in der basolateralen Hepatozytenmembran, insbesondere MRP3 (Multidrug resistance protein
3; ABCC3) und MRP4 (Multidrug resistance protein 4; ABCC4), transportieren Substanzen
vom Hepatozyten in das sinusoidale Blut. Diese Effluxtransporter wurden erst in den
letzten Jahren identifiziert und lokalisiert. Sie kompensieren ein Missverhältnis
zwischen der Aufnahme von Substanzen, z. B. Gallensäuren, über die sinusoidale Membran
in die Hepatozyten und einer unzureichenden kanalikulären Sekretion bei der Cholestase.
Aber auch unter physiologischen Bedingungen wird dieser basolaterale Efflux von Substanzen
beobachtet und ermöglicht nicht nur eine spätere renale Ausscheidung, sondern auch
eine Wiederaufnahme in benachbarte Hepatozyten entlang des Leberazinus.
Abstract
ATP-dependent transport of biliary constituents, such as bile acids, reduced glutathione,
and bilirubin glucuronosides across the hepatocyte canalicular membrane into bile
represents the decisive driving force for the formation of biliary fluid. Functional
characterization, cloning, and localization of hepatocellular transporter proteins
has provided a molecular understanding of the mechanisms underlying bile flow and
intrahepatic cholestasis. Genetic variants in humans and genetic knockout in rodents,
or transporter inhibition have indicated that both the conjugate export pump MRP2
(multidrug resistance protein 2; ABCC2) and the bile salt export pump BSEP (ABCB11)
are major contributors to bile acid-independent and bile acid-dependent bile flow,
respectively. In humans, genetic variants of BSEP, leading to an impaired transport
activity or localization of the protein in the canalicular membrane, are associated
with severe intrahepatic cholestasis. Efflux pumps of the basolateral hepatocyte membrane,
particularly MRP3 (multidrug resistance protein 3; ABCC3) and MRP4 (multidrug resistance
protein 4; ABCC4) pump substances from hepatocytes into sinusoidal blood. These efflux
pumps have been recognized in recent years to play an important compensatory role
in cholestasis and to contribute to the balance between uptake and efflux of substances
during the vectorial transport from sinusoidal blood into bile. This sinusoidal efflux
not only enables subsequent renal elimination, but also re-uptake of substances into
neighboring and more centrally located hepatocytes in the sinusoid.
Schlüsselwörter
ATP-abhängiger Transport - basolaterale Hepatozytenmembran - Cholestase - Gallefluss
- Gallensalz-Exportpumpe (BSEP; ABCB11) - Gallensäuren - intrahepatische Cholestase
Key words
ATP-dependent transport - basolateral hepatocyte membrane - cholestasis - bile flow
- bile salt export pump (BSEP; ABCB11) - bile acids - intrahepatic cholestasis
References
- 1
Kitamura T, Jansen P, Hardenbrook C et al.
Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-)
rats with conjugated hyperbilirubinemia.
Proc Natl Acad Sci USA.
1990;
87
3557-3561
- 2
Ishikawa T, Müller M, Klünemann C et al.
ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular
membrane. Role of the ATP-dependent transport system for glutathione S-conjugates.
J Biol Chem.
1990;
265
19 279-19 286
- 3
Adachi Y, Kobayashi H, Kurumi Y et al.
ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles.
Hepatology.
1991;
14
655-659
- 4
Müller M, Ishikawa T, Berger U et al.
ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane
mediated by a 110-kDa glycoprotein binding ATP and bile salt.
J Biol Chem.
1991;
266
18 920-18 926
- 5
Nishida T, Gatmaitan Z, Che M et al.
Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport
system.
Proc Natl Acad Sci USA.
1991;
88
6590-6594
- 6
Meier P J, Meier-Abt A, Barrett C et al.
Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma
membrane vesicles.
J Biol Chem.
1984;
259
10 614-10 622
- 7
lnoue M, Kinne R, Tran T et al.
Taurocholate transport by rat liver canalicular membrane vesicles.
J Clin Invest.
1984;
73
659-663
- 8
Keppler D, Arias I M.
Introduction: Transport across the hepatocyte canalicular membrane.
FASEB J.
1997;
11
15-18
- 9 Keppler D. Multidrug Resistance Proteins (MRPs, ABCCs): Importance for Pathophysiology
and Drug Therapy. In: Fromm M F, Kim R B, (eds) Drug Transporters; Handbook of Experimental
Pharmacology, Vol. 201.. Heidelberg: Springer; 2011: 299-323
- 10
Keppler D.
Uptake and efflux transporters for conjugates in human hepatocytes.
Methods Enzymol.
2005;
201
531-542
- 11
Nies A T, Schwab M, Keppler D.
Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux
pumps in the elimination of drugs.
Expert Opin Drug Metab Toxicol.
2008;
4
545-568
- 12 Stieger B. The Role of the Sodium-Taurocholate Cotransporting Polypeptide (NTCP)
and of the Bile Salt Export Pump (BSEP) in Physiology and Pathobiology of Bile Formation.
In: (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg:
Springer; 2011: 205-259
- 13 König J. Uptake Transporters of the Human OATP Family. Molecular Characteristics,
Substrates, Their Role in Drug-Drug Interactions, and Functional Consequences of Polymorphisms.
In: (eds) Drug Transporters; Handbook of Experimental Pharmacology, Vol. 201.. Heidelberg:
Springer; 2011: 1-28
- 14
Nies A T, Keppler D.
The apical conjugate efflux pump ABCC2 (MRP2).
Pflügers Arch – Eur J Physiol.
2007;
453
643-659
- 15
Arrese M, Trauner M.
Molecular aspects of bile formation and cholestasis.
Trends Mol Med.
2003;
9
558-564
- 16
Oude Elferink R P, Paulusma C C, Groen A K.
Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases.
Gastroenterology.
2006;
130
908-925
- 17
Pauli-Magnus C, Meier P J.
Hepatobiliary transporters and drug-induced cholestasis.
Hepatology.
2006;
44
778-787
- 18
Paulusma C C, Bosma P J, Zaman G JR et al.
Congenital jaundice in rats with a mutation in a multidrug resistance associated-protein
gene.
Science.
1996;
271
1126-1127
- 19
Büchler M, König J, Brom M et al.
cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein,
cMRP, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant
rats.
J Biol Chem.
1996;
271
15 091-15 098
- 20
Jansen P LM, Peters W HM, Lamers W H.
Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective
hepatic anion transport.
Hepatology.
1985;
5
573-579
- 21
Böhme M, Müller M, Leier I et al.
Cholestasis caused by inhibition of the adenosine triphosphate-dependent bile salt
transport in rat liver.
Gastroenterology.
1994;
107
255-265
- 22
Kubitz R, Keitel V, Häussinger D.
Inborn errors of biliary canalicular transport systems.
Methods Enzymol.
2005;
400
558-569
- 23
Keitel V, Burdelski M, Warskulat U et al.
Expression and localization of hepatobiliary transport proteins in progressive familial
intrahepatic cholestasis.
Hepatology.
2005;
41
1160-1172
- 24
Strautnieks S S, Byrne J A, Pawlikowska L et al.
Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families.
Gastroenterology.
2008;
134
1203-1214
- 25
Keitel V, Burdelski M, Vojnisek Z et al.
De novo bile salt transporter antibodies as a possible cause of recurrent graft failure
after liver transplantation: a novel mechanism of cholestasis.
Hepatology.
2009;
50
510-517
- 26
Jara P, Hierro L, Martinez-Fernandez P et al.
Recurrence of bile salt export pump deficiency after liver transplantation.
N Engl J Med.
2009;
361
1359-1367
- 27
Oude Elferink R PJ, Ottenhoff R, Liefting W et al.
Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary
hyperbilirubinemia.
J Clin Invest.
1989;
84
476-483
- 28
Proost J H, Nijssen H MJ, Strating C B et al.
Pharmacokinetic modeling of the sinusoidal efflux of anionic ligands from the isolated
perfused rat liver: the influence of albumin.
J Pharmacokinet Biopharm.
1993;
21
375-394
- 29
König J, Rost D, Cui Y et al.
Characterization of the human multidrug resistance protein isoform MRP3 localized
to the basolateral hepatocyte membrane.
Hepatology.
1999;
29
1156-1163
- 30
Rius M, Nies A T, Hummel-Eisenbeiss J et al.
Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the
basolateral hepatocyte membrane.
Hepatology.
2003;
38
374-384
- 31 Keppler D, König J, Nies A T. Conjugate export pumps of the multidrug resistance
protein (MRP) family in liver. In: Arias I M, Boyer J L, Chisari F V, (eds). The Liver:
Biology and Pathobiology.. New York: Lippincott Williams & Wilkins; 2001: 373-382
- 32
Akita H, Suzuki H, Hirohashi T et al.
Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with
rat MRP3.
Pharm Res.
2002;
19
34-41
- 33
Lee Y M, Cui Y, König J et al.
Identification and functional characterization of the natural variant MRP3-Arg1297His
of human multidrug resistance protein 3 (MRP3 /ABCC3).
Pharmacogenetics.
2004;
14
213-223
- 34
Rius M, Hummel-Eisenbeiss J, Hofmann A F et al.
Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and
reduced glutathione.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G640-G649
- 35
Kruh G D, Belinsky M G.
The MRP family of drug efflux pumps.
Oncogene.
2003;
22
7537-7552
- 36
Zelcer N, Reid G, Wielinga P et al.
Steroid and bile acid conjugates are substrates of human amultidrug-resistance protein
(MRP) 4 (ATP-binding cassette C 4).
Biochem J.
2003;
371
361-367
- 37
Russel F G, Koenderink J B, Masereeuw R.
Multidrug resistance protein 4 (MRP4 /ABCC4):a versatile efflux transporter for drugs
and signalling molecules.
Trends Pharmacol Sci.
2008;
29
200-207
- 38
Rius M, Hummel-Eisenbeiss J, Keppler D.
ATP-dependent transport of leukotrienes B 4 and C 4 by the multidrug resistance protein
ABCC4 (MRP4).
J Pharmacol Exp Ther.
2008;
324
86-94
- 39
Mayer R, Kartenbeck J, Büchler M et al.
Expression of the MRP gene-encoded conjugate export pump in liver and its selective
absence from the canalicular membrane in transport-deficient mutant hepatocytes.
J Cell Biol.
1995;
131
137-150
- 40 Keppler D, Kartenbeck J. The canalicular conjugate export pump encoded by the cmrp/cmoat
gene. In: Boyer J L, Ockner R K, (eds). Progress in Liver Diseases.. Philadelphia:
Saunders; 1996: 55-67
- 41
Donner M G, Keppler D.
Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic
rat liver.
Hepatology.
2001;
34
351-359
- 42
Soroka C J, Lee J M, Azzaroli F et al.
Cellular localization and up-regulation of multidrug resistance-associated protein
3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver.
Hepatology.
2001;
33
783-791
- 43
Wagner M, Fickert P, Zollner G et al.
Role of farnesoid X receptor in determining hepatic ABC transporter expression and
liver injury in bile duct-ligated mice.
Gastroenterology.
2003;
125
825-838
- 44
Jemnitz K, Veres Z, Vereczkey L.
Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in
rat in response to drugs inducing cholestasis in human.
Toxicol Sci.
2010;
115
80-88
- 45
Wang R, Chen H L, Liu L et al.
Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export
pump.
Hepatology.
2009;
50
948-956
- 46
Chai J, Luo D, Wu X et al.
Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive
cholestasis.
J Gastrointest Surg.
2011;
15
996-1004
- 47
Fröhling W, Stiehl A.
Bile salt glucuronides: identification and quantitative analysis in the urine of patients
with cholestasis.
Eur J Clin Invest.
1976;
6
67-74
- 48
Stiehl A, Raedsch R, Rudolph G et al.
Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile
acids in cirrhotic patients.
Hepatology.
1985;
5
492-495
- 49
Takikawa H, Beppu T, Seyama Y.
Urinary concentrations of bile acid glucuronides and sulfates in hepatobiliary diseases.
Gastroenterol Jpn.
1984;
19
104-109
- 50
Back P.
Bile acid glucuronides. Isolation and identification of a chenodeoxycholic acid glucuronide
from human plasma in intrahepatic cholestasis.
Hoppe Seylers Z Physiol Chem.
1976;
357
213-217
- 51
Marschall H U, Wagner M, Zollner G et al.
Complementary stimulation of hepatobiliary transport and detoxification systems by
rifampicin and ursodeoxycholic acid in humans.
Gastroenterology.
2005;
129
476-485
- 52 Keppler D, Rius M. The concept of basolateral efflux pumps of the hepatocyte. In:
Keppler D, (eds). Bile Acids: Biological Actions and Clinical Relevance.. Dordrecht:
Springer and Falk Foundation; 2007: 48-52
- 53 Rius M, Nies, AT. et al .Bile salt and glutathione coefflux mediated by multidrug
resistance protein MRP4 (ABCC4), a basolateral transporter of the hepatocyte. In:
Paumgartner G, (eds), Bile Acid Biology and its Therapeutic Implications;. Dordrecht:
Springer; 2005: 101-106
- 54
Ballatori N, Christian W V, Lee J Y et al.
OSTα-OSTβ: a major basolateral bile acid and steroid transporter in human intestinal,
renal, and biliary epithelia.
Hepatology.
2005;
42
1270-1279
- 55
Trauner M, Halilbasic E.
Nuclear receptors as new perspective for the management of liver diseases.
Gastroenterology.
2011;
140
1120-1125
- 56
Pauli-Magnus C, Meier P J, Stieger B.
Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy.
Semin Liver Dis.
2010;
30
147-159
- 57
Cui Y, König J, Leier I et al.
Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter
SLC21A6.
J Biol Chem.
2001;
276
9626-9630
- 58
Cui Y, König J, Keppler D.
Vectorial transport by double-transfected cells expressing the human uptake transporter
SLC21A8 and the apical export pump ABCC2.
Mol Pharmacol.
2001;
60
934-943
- 59
Martínez-Ansó E, Castillo J E, Díez J et al.
Immunohistochemical detection of chloride/bicarbonate anion exchangers in human liver.
Hepatology.
1994;
19
1400-1406
- 60
Beuers U, Hohenester S, Buy Wenniger L J et al.
The biliary HCO3- umbrella: a unifying hypothesis on pathogenetic and therapeutic
aspects of fibrosing cholangiopathies.
Hepatology.
2010;
52
1489-1496
- 61
Stefan de C, Jansen S, Bollen M.
NPP-type ectophosphodiesterases: unity in diversity.
Trends Biochem Sci.
2005;
30
542-550
- 62
Kremer A E, Martens J JWW, Kulik W et al.
Lysophosphatidic acid is a potential mediator of cholestatic pruritus.
Gastroenterology.
2010;
139
1008-1018
- 63
Watanabe N, Tsukada N, Smith C R et al.
Motility of bile canaliculi in the living animal: implications for bile flow.
J Cell Biol.
1991;
113
1069-1080
Prof. Dr. Dietrich Keppler
German Cancer Research Center (DKFZ)
Im Neuenheimer Feld 280
69120 Heidelberg
Germany
Email: d.keppler@dkfz-heidelberg.de