Semin Liver Dis 2011; 31(3): 280-292
DOI: 10.1055/s-0031-1286059
© Thieme Medical Publishers

The Molecular Pathogenesis of Hereditary Hemochromatosis

Jodie L. Babitt1 , Herbert Y. Lin1
  • 1Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
Further Information

Publication History

Publication Date:
07 September 2011 (online)

ABSTRACT

Hereditary hemochromatosis is a genetic disorder of iron overload. Over the past 15 years, significant advances have been made in understanding the molecular pathogenesis of this disorder. First, genetic studies linked this disorder to mutations in several genes, including HFE, transferrin receptor 2 (TFR2), hepcidin (HAMP), ferroportin (SLC40A1), and hemojuvelin (HFE2). Recent progress has generated significant insight into the function of these molecules in systemic iron homeostasis, and has revealed that despite the genetic and phenotypic diversity of hereditary hemochromatosis, there are common pathogenic mechanisms underlying this disease. The common downstream mechanism of iron overload in hereditary hemochromatosis is abnormal regulation of the hepcidin–ferroportin axis, leading to a failure to prevent excess iron from entering the circulation. Recent data are starting to unravel the molecular mechanisms by which iron regulates hepcidin production, and has demonstrated a key role for the bone morphogenetic protein–hemojuvelin–SMAD signaling pathway in this process. Future studies will be needed to more fully understand the molecular mechanisms of iron sensing and the roles of HFE and TFR2 in this process. Here, the authors review the current state of knowledge on the molecular pathogenesis of hereditary hemochromatosis.

REFERENCES

  • 1 Smith P M, Godfrey B E, Williams R. Iron absorption in idiopathic haemochromatosis and its measurement using a whole-body counter.  Clin Sci. 1969;  37 (2) 519-531
  • 2 Lynch S R, Skikne B S, Cook J D. Food iron absorption in idiopathic hemochromatosis.  Blood. 1989;  74 (6) 2187-2193
  • 3 Fillet G, Beguin Y, Baldelli L. Model of reticuloendothelial iron metabolism in humans: abnormal behavior in idiopathic hemochromatosis and in inflammation.  Blood. 1989;  74 (2) 844-851
  • 4 Trousseau A. Glycosurie: diabete sucre. In: Clinique Med de l'Hotel de Paris. Paris: J.B. Bailliere; 1865. 2: 663-698
  • 5 von Recklinghausen F D. Uber haemochromatose. Tagll Versamml Natur Artze Heidelberg.  1889;  324-325
  • 6 Sheldon J. Haemochromatosis. London: Oxford University Press; 1935
  • 7 Feder J N, Gnirke A, Thomas W et al.. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis.  Nat Genet. 1996;  13 (4) 399-408
  • 8 Kawabata H, Yang R, Hirama T et al.. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family.  J Biol Chem. 1999;  274 (30) 20826-20832
  • 9 Camaschella C, Roetto A, Calì A et al.. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22.  Nat Genet. 2000;  25 (1) 14-15
  • 10 Pietrangelo A, Montosi G, Totaro A et al.. Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene.  N Engl J Med. 1999;  341 (10) 725-732
  • 11 Donovan A, Brownlie A, Zhou Y et al.. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter.  Nature. 2000;  403 (6771) 776-781
  • 12 McKie A T, Marciani P, Rolfs A et al.. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation.  Mol Cell. 2000;  5 (2) 299-309
  • 13 Njajou O T, Vaessen N, Joosse M et al.. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis.  Nat Genet. 2001;  28 (3) 213-214
  • 14 Montosi G, Donovan A, Totaro A et al.. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene.  J Clin Invest. 2001;  108 (4) 619-623
  • 15 Roetto A, Papanikolaou G, Politou M et al.. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis.  Nat Genet. 2003;  33 (1) 21-22
  • 16 Papanikolaou G, Samuels M E, Ludwig E H et al.. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis.  Nat Genet. 2004;  36 (1) 77-82
  • 17 Krause A, Neitz S, Mägert H J et al.. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity.  FEBS Lett. 2000;  480 (2-3) 147-150
  • 18 Park C H, Valore E V, Waring A J, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver.  J Biol Chem. 2001;  276 (11) 7806-7810
  • 19 Pigeon C, Ilyin G, Courselaud B et al.. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload.  J Biol Chem. 2001;  276 (11) 7811-7819
  • 20 Nicolas G, Bennoun M, Devaux I et al.. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice.  Proc Natl Acad Sci U S A. 2001;  98 (15) 8780-8785
  • 21 Nicolas G, Bennoun M, Porteu A et al.. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin.  Proc Natl Acad Sci U S A. 2002;  99 (7) 4596-4601
  • 22 Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment.  Gastroenterology. 2010;  139 (2) 393-408 408 e1-e2
  • 23 Nemeth E, Tuttle M S, Powelson J et al.. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization.  Science. 2004;  306 (5704) 2090-2093
  • 24 Sham R L, Phatak P D, Nemeth E, Ganz T. Hereditary hemochromatosis due to resistance to hepcidin: high hepcidin concentrations in a family with C326S ferroportin mutation.  Blood. 2009;  114 (2) 493-494
  • 25 Fernandes A, Preza G C, Phung Y et al.. The molecular basis of hepcidin-resistant hereditary hemochromatosis.  Blood. 2009;  114 (2) 437-443
  • 26 Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism.  Cell. 2004;  117 (3) 285-297
  • 27 Ganz T. Hepcidin and iron regulation, 10 years later.  Blood. 2011;  117 (17) 4425-4433
  • 28 Nicolas G, Chauvet C, Viatte L et al.. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation.  J Clin Invest. 2002;  110 (7) 1037-1044
  • 29 Nemeth E, Rivera S, Gabayan V et al.. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin.  J Clin Invest. 2004;  113 (9) 1271-1276
  • 30 Ashby D R, Gale D P, Busbridge M et al.. Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease.  Kidney Int. 2009;  75 (9) 976-981
  • 31 Theurl I, Aigner E, Theurl M et al.. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications.  Blood. 2009;  113 (21) 5277-5286
  • 32 Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6.  Proc Natl Acad Sci U S A. 2005;  102 (6) 1906-1910
  • 33 Sow F B, Florence W C, Satoskar A R, Schlesinger L S, Zwilling B S, Lafuse W P. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis.  J Leukoc Biol. 2007;  82 (4) 934-945
  • 34 Anderson G J, Frazer D M, Wilkins S J et al.. Relationship between intestinal iron-transporter expression, hepatic hepcidin levels and the control of iron absorption.  Biochem Soc Trans. 2002;  30 (4) 724-726
  • 35 Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS.  Blood. 2005;  106 (5) 1864-1866
  • 36 Zhang K, Shen X, Wu J et al.. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response.  Cell. 2006;  124 (3) 587-599
  • 37 Vecchi C, Montosi G, Zhang K et al.. ER stress controls iron metabolism through induction of hepcidin.  Science. 2009;  325 (5942) 877-880
  • 38 Oliveira S J, Pinto J P, Picarote G et al.. ER stress-inducible factor CHOP affects the expression of hepcidin by modulating C/EBPalpha activity.  PLoS ONE. 2009;  4 (8) e6618
  • 39 Pak M, Lopez M A, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity.  Blood. 2006;  108 (12) 3730-3735
  • 40 Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis.  Physiol Res. 2006;  55 (6) 667-674
  • 41 Peyssonnaux C, Zinkernagel A S, Schuepbach R A et al.. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs).  J Clin Invest. 2007;  117 (7) 1926-1932
  • 42 Peyssonnaux C, Nizet V, Johnson R S. Role of the hypoxia inducible factors HIF in iron metabolism.  Cell Cycle. 2008;  7 (1) 28-32
  • 43 Tanno T, Bhanu N V, Oneal P A et al.. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin.  Nat Med. 2007;  13 (9) 1096-1101
  • 44 Tanno T, Porayette P, Sripichai O et al.. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells.  Blood. 2009;  114 (1) 181-186
  • 45 Lee P L, Beutler E, Rao S V, Barton J C. Genetic abnormalities and juvenile hemochromatosis: mutations of the HJV gene encoding hemojuvelin.  Blood. 2004;  103 (12) 4669-4671
  • 46 Huang F W, Pinkus J L, Pinkus G S, Fleming M D, Andrews N C. A mouse model of juvenile hemochromatosis.  J Clin Invest. 2005;  115 (8) 2187-2191
  • 47 Niederkofler V, Salie R, Arber S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload.  J Clin Invest. 2005;  115 (8) 2180-2186
  • 48 Samad T A, Srinivasan A, Karchewski L A et al.. DRAGON: a member of the repulsive guidance molecule-related family of neuronal- and muscle-expressed membrane proteins is regulated by DRG11 and has neuronal adhesive properties.  J Neurosci. 2004;  24 (8) 2027-2036
  • 49 Niederkofler V, Salie R, Sigrist M, Arber S. Repulsive guidance molecule (RGM) gene function is required for neural tube closure but not retinal topography in the mouse visual system.  J Neurosci. 2004;  24 (4) 808-818
  • 50 Monnier P P, Sierra A, Macchi P et al.. RGM is a repulsive guidance molecule for retinal axons.  Nature. 2002;  419 (6905) 392-395
  • 51 Samad T A, Rebbapragada A, Bell E et al.. DRAGON, a bone morphogenetic protein co-receptor.  J Biol Chem. 2005;  280 (14) 14122-14129
  • 52 Babitt J L, Zhang Y, Samad T A et al.. Repulsive guidance molecule (RGMa), a DRAGON homologue, is a bone morphogenetic protein co-receptor.  J Biol Chem. 2005;  280 (33) 29820-29827
  • 53 Corradini E, Babitt J L, Lin H Y. The RGM/DRAGON family of BMP co-receptors.  Cytokine Growth Factor Rev. 2009;  20 (5-6) 389-398
  • 54 Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling.  Genes Cells. 2002;  7 (12) 1191-1204
  • 55 Mleczko-Sanecka K, Casanovas G, Ragab A et al.. SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression.  Blood. 2010;  115 (13) 2657-2665
  • 56 Xia Y, Cortez-Retamozo V, Niederkofler V et al.. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.  J Immunol. 2011;  186 (3) 1369-1376
  • 57 Babitt J L, Huang F W, Wrighting D M et al.. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression.  Nat Genet. 2006;  38 (5) 531-539
  • 58 Wang R H, Li C, Xu X et al.. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression.  Cell Metab. 2005;  2 (6) 399-409
  • 59 Truksa J, Peng H, Lee P, Beutler E. Different regulatory elements are required for response of hepcidin to interleukin-6 and bone morphogenetic proteins 4 and 9.  Br J Haematol. 2007;  139 (1) 138-147
  • 60 Verga Falzacappa M V, Casanovas G, Hentze M W, Muckenthaler M U. A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells.  J Mol Med. 2008;  86 (5) 531-540
  • 61 Truksa J, Lee P, Beutler E. Two BMP responsive elements, STAT, and bZIP/HNF4/COUP motifs of the hepcidin promoter are critical for BMP, SMAD1, and HJV responsiveness.  Blood. 2009;  113 (3) 688-695
  • 62 Babitt J L, Huang F W, Xia Y, Sidis Y, Andrews N C, Lin H Y. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance.  J Clin Invest. 2007;  117 (7) 1933-1939
  • 63 Andriopoulos Jr B, Corradini E, Xia Y et al.. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism.  Nat Genet. 2009;  41 (4) 482-487
  • 64 Yu P B, Hong C C, Sachidanandan C et al.. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism.  Nat Chem Biol. 2008;  4 (1) 33-41
  • 65 Truksa J, Peng H, Lee P, Beutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of HFE, transferrin receptor 2 (TFR2), and IL-6.  Proc Natl Acad Sci U S A. 2006;  103 (27) 10289-10293
  • 66 Xia Y, Babitt J L, Sidis Y, Chung R T, Lin H Y. Hemojuvelin regulates hepcidin expression via a selective subset of BMP ligands and receptors independently of neogenin.  Blood. 2008;  111 (10) 5195-5204
  • 67 Kautz L, Meynard D, Monnier A et al.. Iron regulates phosphorylation of Smad1/5/8 and gene expression of BMP6, SMAD7, ID1, and ATOH8 in the mouse liver.  Blood. 2008;  112 (4) 1503-1509
  • 68 Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth M P. Lack of the bone morphogenetic protein BMP6 induces massive iron overload.  Nat Genet. 2009;  41 (4) 478-481
  • 69 Arndt S, Maegdefrau U, Dorn C, Schardt K, Hellerbrand C, Bosserhoff A K. Iron-induced expression of bone morphogenic protein 6 in intestinal cells is the main regulator of hepatic hepcidin expression in vivo.  Gastroenterology. 2010;  138 (1) 372-382
  • 70 Kautz L, Besson-Fournier C, Meynard D, Latour C, Roth M P, Coppin H. Iron overload induces BMP6 expression in the liver but not in the duodenum.  Haematologica. 2011;  96 (2) 199-203
  • 71 Zhang A S, Gao J, Koeberl D D, Enns C A. The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo.  J Biol Chem. 2010;  285 (22) 16416-16423
  • 72 Corradini E, Meynard D, Wu Q et al.. Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice.  Hepatology. 2011;  54 (1) 273-284
  • 73 Wrighting D M, Andrews N C. Interleukin-6 induces hepcidin expression through STAT3.  Blood. 2006;  108 (9) 3204-3209
  • 74 Verga Falzacappa M V, Vujic Spasic M, Kessler R, Stolte J, Hentze M W, Muckenthaler M U. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation.  Blood. 2007;  109 (1) 353-358
  • 75 Pietrangelo A, Dierssen U, Valli L et al.. STAT3 is required for IL-6-gp130-dependent activation of hepcidin in vivo.  Gastroenterology. 2007;  132 (1) 294-300
  • 76 Steinbicker A U, Sachidanandan C, Vonner A J et al.. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation.  Blood. 2011;  117 (18) 4915-4923
  • 76a Theurl I, Schroll A, Sonnweber T et al.. Pharmacologic inhibition of hepcidin expression reverses anemia of chronic disease in rats.  Blood. 2011;  July 5 (Epub ahead of print)
  • 77 Feder J N, Tsuchihashi Z, Irrinki A et al.. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression.  J Biol Chem. 1997;  272 (22) 14025-14028
  • 78 Waheed A, Parkkila S, Zhou X Y et al.. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells.  Proc Natl Acad Sci U S A. 1997;  94 (23) 12384-12389
  • 79 Castoldi M, Spasic M V, Altamura S et al.. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice.  J Clin Invest. 2011;  121 (4) 1386-1396
  • 80 Parkkila S, Waheed A, Britton R S et al.. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis.  Proc Natl Acad Sci U S A. 1997;  94 (24) 13198-13202
  • 81 Feder J N, Penny D M, Irrinki A et al.. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding.  Proc Natl Acad Sci U S A. 1998;  95 (4) 1472-1477
  • 82 Waheed A, Parkkila S, Saarnio J et al.. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum.  Proc Natl Acad Sci U S A. 1999;  96 (4) 1579-1584
  • 83 Lebrón J A, West Jr A P, Bjorkman P J. The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptor.  J Mol Biol. 1999;  294 (1) 239-245
  • 84 Bennett M J, Lebrón J A, Bjorkman P J. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor.  Nature. 2000;  403 (6765) 46-53
  • 85 West Jr A P, Giannetti A M, Herr A B et al.. Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites.  J Mol Biol. 2001;  313 (2) 385-397
  • 86 Giannetti A M, Björkman P J. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface.  J Biol Chem. 2004;  279 (24) 25866-25875
  • 87 Goswami T, Andrews N C. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing.  J Biol Chem. 2006;  281 (39) 28494-28498
  • 88 Chen J, Chloupková M, Gao J, Chapman-Arvedson T L, Enns C A. HFE modulates transferrin receptor 2 levels in hepatoma cells via interactions that differ from transferrin receptor 1-HFE interactions.  J Biol Chem. 2007;  282 (51) 36862-36870
  • 89 Levy J E, Montross L K, Cohen D E, Fleming M D, Andrews N C. The C282Y mutation causing hereditary hemochromatosis does not produce a null allele.  Blood. 1999;  94 (1) 9-11
  • 90 Vujić Spasić M, Kiss J, Herrmann T et al.. HFE acts in hepatocytes to prevent hemochromatosis.  Cell Metab. 2008;  7 (2) 173-178
  • 91 Ahmad K A, Ahmann J R, Migas M C et al.. Decreased liver hepcidin expression in the Hfe knockout mouse.  Blood Cells Mol Dis. 2002;  29 (3) 361-366
  • 92 Nicolas G, Viatte L, Lou D Q et al.. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis.  Nat Genet. 2003;  34 (1) 97-101
  • 93 Muckenthaler M, Roy C N, Custodio A O et al.. Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis.  Nat Genet. 2003;  34 (1) 102-107
  • 94 Bridle K R, Frazer D M, Wilkins S J et al.. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis.  Lancet. 2003;  361 (9358) 669-673
  • 95 Piperno A, Girelli D, Nemeth E et al.. Blunted hepcidin response to oral iron challenge in HFE-related hemochromatosis.  Blood. 2007;  110 (12) 4096-4100
  • 96 Tjalsma H, Laarakkers C M, van Swelm R P et al.. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.  PLoS ONE. 2011;  6 (3) e16762
  • 97 Schmidt P J, Toran P T, Giannetti A M, Bjorkman P J, Andrews N C. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression.  Cell Metab. 2008;  7 (3) 205-214
  • 98 Gao J, Chen J, Kramer M, Tsukamoto H, Zhang A S, Enns C A. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression.  Cell Metab. 2009;  9 (3) 217-227
  • 99 Schmidt P J, Andrews N C, Fleming M D. Hepcidin induction by transgenic overexpression of HFE does not require the Hfe cytoplasmic tail, but does require hemojuvelin.  Blood. 2010;  116 (25) 5679-5687
  • 100 Corradini E, Garuti C, Montosi G et al.. Bone morphogenetic protein signaling is impaired in an HFE knockout mouse model of hemochromatosis.  Gastroenterology. 2009;  137 (4) 1489-1497
  • 101 Kautz L, Meynard D, Besson-Fournier C et al.. BMP/SMAD signaling is not enhanced in HFE-deficient mice despite increased Bmp6 expression.  Blood. 2009;  114 (12) 2515-2520
  • 102 Bolondi G, Garuti C, Corradini E et al.. Altered hepatic BMP signaling pathway in human HFE hemochromatosis.  Blood Cells Mol Dis. 2010;  45 (4) 308-312
  • 103 Ryan J D, Ryan E, Fabre A, Lawless M W, Crowe J. Defective bone morphogenic protein signaling underlies hepcidin deficiency in HFE hereditary hemochromatosis.  Hepatology. 2010;  52 (4) 1266-1273
  • 104 Corradini E, Schmidt P J, Meynard D et al.. BMP6 treatment compensates for the molecular defect and ameliorates hemochromatosis in HFE knockout mice.  Gastroenterology. 2010;  139 (5) 1721-1729
  • 105 Finberg K E, Whittlesey R L, Andrews N C. TMPRSS6 is a genetic modifier of the HFE-hemochromatosis phenotype in mice.  Blood. 2011;  117 (17) 4590-4599
  • 106 Velasco G, Cal S, Quesada V, Sánchez L M, López-Otín C. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins.  J Biol Chem. 2002;  277 (40) 37637-37646
  • 107 Park T J, Lee Y J, Kim H J, Park H G, Park W J. Cloning and characterization of TMPRSS6, a novel type 2 transmembrane serine protease.  Mol Cells. 2005;  19 (2) 223-227
  • 108 Tanaka T, Roy C N, Yao W et al.. A genome-wide association analysis of serum iron concentrations.  Blood. 2010;  115 (1) 94-96
  • 109 Chambers J C, Zhang W, Li Y et al.. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels.  Nat Genet. 2009;  41 (11) 1170-1172
  • 110 Benyamin B, Ferreira M A, Willemsen G et al.. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume.  Nat Genet. 2009;  41 (11) 1173-1175
  • 111 Ganesh S K, Zakai N A, van Rooij F J et al.. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium.  Nat Genet. 2009;  41 (11) 1191-1198
  • 112 Finberg K E, Heeney M M, Campagna D R et al.. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA).  Nat Genet. 2008;  40 (5) 569-571
  • 113 Du X, She E, Gelbart T et al.. The serine protease TMPRSS6 is required to sense iron deficiency.  Science. 2008;  320 (5879) 1088-1092
  • 114 Folgueras A R, de Lara F M, Pendás A M et al.. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis.  Blood. 2008;  112 (6) 2539-2545
  • 115 Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin.  Cell Metab. 2008;  8 (6) 502-511
  • 116 Maxson J E, Chen J, Enns C A, Zhang A S. Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression.  J Biol Chem. 2010;  285 (50) 39021-39028
  • 117 Truksa J, Gelbart T, Peng H, Beutler E, Beutler B, Lee P. Suppression of the hepcidin-encoding gene HAMP permits iron overload in mice lacking both hemojuvelin and matriptase-2/TMPRSS6.  Br J Haematol. 2009;  147 (4) 571-581
  • 118 Finberg K E, Whittlesey R L, Fleming M D, Andrews N C. Down-regulation of BMP/SMAD signaling by TMPRSS6 is required for maintenance of systemic iron homeostasis.  Blood. 2010;  115 (18) 3817-3826
  • 119 Fleming R E, Ahmann J R, Migas M C et al.. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis.  Proc Natl Acad Sci U S A. 2002;  99 (16) 10653-10658
  • 120 Kawabata H, Fleming R E, Gui D et al.. Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis.  Blood. 2005;  105 (1) 376-381
  • 121 Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochromatosis.  Blood. 2005;  105 (4) 1803-1806
  • 122 Kawabata H, Nakamaki T, Ikonomi P, Smith R D, Germain R S, Koeffler H P. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells.  Blood. 2001;  98 (9) 2714-2719
  • 123 West Jr A P, Bennett M J, Sellers V M, Andrews N C, Enns C A, Bjorkman P J. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE.  J Biol Chem. 2000;  275 (49) 38135-38138
  • 124 Johnson M B, Enns C A. Diferric transferrin regulates transferrin receptor 2 protein stability.  Blood. 2004;  104 (13) 4287-4293
  • 125 Robb A, Wessling-Resnick M. Regulation of transferrin receptor 2 protein levels by transferrin.  Blood. 2004;  104 (13) 4294-4299
  • 126 Wallace D F, Summerville L, Crampton E M, Frazer D M, Anderson G J, Subramaniam V N. Combined deletion of HFE and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload.  Hepatology. 2009;  50 (6) 1992-2000
  • 127 Poli M, Luscieti S, Gandini V et al.. Transferrin receptor 2 and HFE regulate furin expression via mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) signaling. Implications for transferrin-dependent hepcidin regulation.  Haematologica. 2010;  95 (11) 1832-1840
  • 127a Corradini E, Rozier M, Meynard D et al.. Iron regulation of hepcidin despite attenuated Smad 1,5,8 signaling in mice without transferrin receptor 2 or Hfe.  Gastroenterology. 2011;  July 8 (Epub ahead of print)
  • 128 Ramey G, Deschemin J C, Vaulont S. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes.  Haematologica. 2009;  94 (6) 765-772
  • 129 Calzolari A, Raggi C, Deaglio S et al.. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway.  J Cell Sci. 2006;  119 (Pt 21) 4486-4498
  • 130 Ramos E, Kautz L, Rodriguez R et al.. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice.  Hepatology. 2011;  53 (4) 1333-1341
  • 131 Roetto A, Di Cunto F, Pellegrino R M et al.. Comparison of 3 TFR2-deficient murine models suggests distinct functions for TFR2-alpha and Tfr2-beta isoforms in different tissues.  Blood. 2010;  115 (16) 3382-3389
  • 132 Girelli D, Trombini P, Busti F et al.. A time course of hepcidin response to iron challenge in patients with HFE and TFR2 hemochromatosis.  Haematologica. 2011;  96 (4) 500-506
  • 133 Vielmetter J, Kayyem J F, Roman J M, Dreyer W J. Neogenin, an avian cell surface protein expressed during terminal neuronal differentiation, is closely related to the human tumor suppressor molecule deleted in colorectal cancer.  J Cell Biol. 1994;  127 (6 Pt 2) 2009-2020
  • 134 Matsunaga E, Tauszig-Delamasure S, Monnier P P et al.. RGM and its receptor neogenin regulate neuronal survival.  Nat Cell Biol. 2004;  6 (8) 749-755
  • 135 Zhang A S, West Jr A P, Wyman A E, Bjorkman P J, Enns C A. Interaction of hemojuvelin with neogenin results in iron accumulation in human embryonic kidney 293 cells.  J Biol Chem. 2005;  280 (40) 33885-33894
  • 136 Kuns-Hashimoto R, Kuninger D, Nili M, Rotwein P. Selective binding of RGMc/hemojuvelin, a key protein in systemic iron metabolism, to BMP-2 and Neogenin.  Am J Physiol Cell Physiol. 2008;  294 (4) C994-C1003
  • 137 Yang F, West Jr A P, Allendorph G P, Choe S, Bjorkman P J. Neogenin interacts with hemojuvelin through its two membrane-proximal fibronectin type III domains.  Biochemistry. 2008;  47 (14) 4237-4245
  • 138 Lee D H, Zhou L J, Zhou Z et al.. Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin expression and iron homeostasis.  Blood. 2010;  115 (15) 3136-3145
  • 139 Zhang A S, Yang F, Wang J, Tsukamoto H, Enns C A. Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression.  J Biol Chem. 2009;  284 (34) 22580-22589
  • 140 Hagihara M, Endo M, Hata K et al.. Neogenin, a receptor for bone morphogenetic proteins.  J Biol Chem. 2011;  286 (7) 5157-5165
  • 141 Zhang A S, Anderson S A, Meyers K R, Hernandez C, Eisenstein R S, Enns C A. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin.  J Biol Chem. 2007;  282 (17) 12547-12556
  • 142 Kuninger D, Kuns-Hashimoto R, Nili M, Rotwein P. Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin.  BMC Biochem. 2008;  9 9
  • 143 Silvestri L, Pagani A, Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis.  Blood. 2008;  111 (2) 924-931
  • 144 Lin L, Nemeth E, Goodnough J B, Thapa D R, Gabayan V, Ganz T. Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site.  Blood Cells Mol Dis. 2008;  40 (1) 122-131
  • 145 Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin.  Cell Metab. 2008;  8 (6) 502-511
  • 146 Maxson J E, Chen J, Enns C A, Zhang A S. Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression.  J Biol Chem. 2010;  285 (50) 39021-39028
  • 147 Lin L, Goldberg Y P, Ganz T. Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin.  Blood. 2005;  106 (8) 2884-2889
  • 148 Brasse-Lagnel C, Poli M, Lesueur C et al.. Immunoassay for human serum hemojuvelin.  Haematologica. 2010;  95 (12) 2031-2037
  • 149 Luciani N, Brasse-Lagnel C, Poli M et al.. Hemojuvelin: a new link between obesity and iron homeostasis.  Obesity (Silver Spring). 2011;  (Epub ahead of print)

Herbert Y LinM.D. Ph.D. 

Program in Membrane Biology, Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital

185 Cambridge Street, CPZN-8216, Boston, MA 02114

Email: Lin.herbert@mgh.harvard.edu

    >