RSS-Feed abonnieren
DOI: 10.1055/s-0031-1295726
Antifungal PK/PD Considerations in Fungal Pulmonary Infections
Publikationsverlauf
Publikationsdatum:
13. Dezember 2011 (online)

ABSTRACT
Pharmacokinetic/pharmacodynamic (PK/PD) studies examine the relationships of drug pharmacokinetic properties, in vitro drug potency, and treatment efficacy. Study results are integral to the design of optimal dosing strategies, prevention of toxicity, development and interpretation of susceptibility break points, and prevention and recognition of drug resistance. These principles are increasingly utilized to optimize therapy for pulmonary fungal pathogens such as Aspergillus species, although they have been underutilized for other difficult-to-treat fungal pathogens. Understanding the design and implementation of PK/PD studies facilitates more effective utilization of the available antifungal agents to improve outcomes for many of these life-threatening infections.
KEYWORDS
Pharmacokinetics - pharmacodynamics - antifungal - Aspergillus - pulmonary
REFERENCES
- 1
Craig W A.
Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of
mice and men.
Clin Infect Dis.
1998;
26
(1)
1-10, quiz 11–12
Reference Ris Wihthout Link
- 2
Ambrose P G, Bhavnani S M, Rubino C M et al..
Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice
anymore.
Clin Infect Dis.
2007;
44
(1)
79-86
Reference Ris Wihthout Link
- 3
Andes D.
Clinical utility of antifungal pharmacokinetics and pharmacodynamics.
Curr Opin Infect Dis.
2004;
17
(6)
533-540
Reference Ris Wihthout Link
- 4
Andes D.
Pharmacokinetics and pharmacodynamics of antifungals.
Infect Dis Clin North Am.
2006;
20
(3)
679-697
Reference Ris Wihthout Link
- 5
Groll A H, Lyman C A, Petraitis V et al..
Compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid
formulations.
Antimicrob Agents Chemother.
2006;
50
(10)
3418-3423
Reference Ris Wihthout Link
- 6
Lewis R E, Liao G, Hou J, Chamilos G, Prince R A, Kontoyiannis D P.
Comparative analysis of amphotericin B lipid complex and liposomal amphotericin B
kinetics of lung accumulation and fungal clearance in a murine model of acute invasive
pulmonary aspergillosis.
Antimicrob Agents Chemother.
2007;
51
(4)
1253-1258
Reference Ris Wihthout Link
- 7
Groll A H, Giri N, Petraitis V et al..
Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental
Candida albicans infection of the central nervous system.
J Infect Dis.
2000;
182
(1)
274-282
Reference Ris Wihthout Link
- 8 Drugs@FDA. Diflucan [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
Reference Ris Wihthout Link
- 9 Drugs@FDA. Vfend [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
Reference Ris Wihthout Link
- 10 Drugs@FDA. Sporanox [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
Reference Ris Wihthout Link
- 11 Drugs@FDA. Noxafil [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
Reference Ris Wihthout Link
- 12
O’Day D M, Foulds G, Williams T E, Robinson R D, Allen R H, Head W S.
Ocular uptake of fluconazole following oral administration.
Arch Ophthalmol.
1990;
108
(7)
1006-1008
Reference Ris Wihthout Link
- 13
Savani D V, Perfect J R, Cobo L M, Durack D T.
Penetration of new azole compounds into the eye and efficacy in experimental Candida
endophthalmitis.
Antimicrob Agents Chemother.
1987;
31
(1)
6-10
Reference Ris Wihthout Link
- 14
Mian U K, Mayers M, Garg Y et al..
Comparison of fluconazole pharmacokinetics in serum, aqueous humor, vitreous humor,
and cerebrospinal fluid following a single dose and at steady state.
J Ocul Pharmacol Ther.
1998;
14
(5)
459-471
Reference Ris Wihthout Link
- 15
Arndt C A, Walsh T J, McCully C L, Balis F M, Pizzo P A, Poplack D G.
Fluconazole penetration into cerebrospinal fluid: implications for treating fungal
infections of the central nervous system.
J Infect Dis.
1988;
157
(1)
178-180
Reference Ris Wihthout Link
- 16
Foulds G, Brennan D R, Wajszczuk C et al..
Fluconazole penetration into cerebrospinal fluid in humans.
J Clin Pharmacol.
1988;
28
(4)
363-366
Reference Ris Wihthout Link
- 17
Purkins L, Wood N, Kleinermans D, Greenhalgh K, Nichols D.
Effect of food on the pharmacokinetics of multiple-dose oral voriconazole.
Br J Clin Pharmacol.
2003;
56
(Suppl 1)
17-23
Reference Ris Wihthout Link
- 18
Lutsar I, Roffey S, Troke P.
Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea
pigs and immunocompromised patients.
Clin Infect Dis.
2003;
37
(5)
728-732
Reference Ris Wihthout Link
- 19
Hariprasad S M, Mieler W F, Holz E R et al..
Determination of vitreous, aqueous, and plasma concentration of orally administered
voriconazole in humans.
Arch Ophthalmol.
2004;
122
(1)
42-47
Reference Ris Wihthout Link
- 20
Hyland R, Jones B C, Smith D A.
Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole.
Drug Metab Dispos.
2003;
31
(5)
540-547
Reference Ris Wihthout Link
- 21
Smith J, Safdar N, Knasinski V et al..
Voriconazole therapeutic drug monitoring.
Antimicrob Agents Chemother.
2006;
50
(4)
1570-1572
Reference Ris Wihthout Link
- 22
Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O.
Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves
efficacy and safety outcomes.
Clin Infect Dis.
2008;
46
(2)
201-211
Reference Ris Wihthout Link
- 23
Denning D W, Ribaud P, Milpied N et al..
Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis.
Clin Infect Dis.
2002;
34
(5)
563-571
Reference Ris Wihthout Link
- 24
Barone J A, Moskovitz B L, Guarnieri J et al..
Enhanced bioavailability of itraconazole in hydroxypropyl-beta-cyclodextrin solution
versus capsules in healthy volunteers.
Antimicrob Agents Chemother.
1998;
42
(7)
1862-1865
Reference Ris Wihthout Link
- 25
Van Peer A, Woestenborghs R, Heykants J, Gasparini R, Gauwenbergh G.
The effects of food and dose on the oral systemic availability of itraconazole in
healthy subjects.
Eur J Clin Pharmacol.
1989;
36
(4)
423-426
Reference Ris Wihthout Link
- 26
Jaruratanasirikul S, Sriwiriyajan S.
Effect of omeprazole on the pharmacokinetics of itraconazole.
Eur J Clin Pharmacol.
1998;
54
(2)
159-161
Reference Ris Wihthout Link
- 27
Lange D, Pavao J H, Wu J, Klausner M.
Effect of a cola beverage on the bioavailability of itraconazole in the presence of
H2 blockers.
J Clin Pharmacol.
1997;
37
(6)
535-540
Reference Ris Wihthout Link
- 28
Barone J A, Koh J G, Bierman R H et al..
Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy
male volunteers.
Antimicrob Agents Chemother.
1993;
37
(4)
778-784
Reference Ris Wihthout Link
- 29
Johnson M D, Hamilton C D, Drew R H, Sanders L L, Pennick G J, Perfect J R.
A randomized comparative study to determine the effect of omeprazole on the peak serum
concentration of itraconazole oral solution.
J Antimicrob Chemother.
2003;
51
(2)
453-457
Reference Ris Wihthout Link
- 30
Barone J A, Moskovitz B L, Guarnieri J et al..
Food interaction and steady-state pharmacokinetics of itraconazole oral solution in
healthy volunteers.
Pharmacotherapy.
1998;
18
(2)
295-301
Reference Ris Wihthout Link
- 31
Van de Velde V J, Van Peer A P, Heykants J J et al..
Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation
of itraconazole.
Pharmacotherapy.
1996;
16
(3)
424-428
Reference Ris Wihthout Link
- 32
Tucker R M, Denning D W, Arathoon E G, Rinaldi M G, Stevens D A.
Itraconazole therapy for nonmeningeal coccidioidomycosis: clinical and laboratory
observations.
J Am Acad Dermatol.
1990;
23
(3 Pt 2)
593-601
Reference Ris Wihthout Link
- 33
Rex J H, Pfaller M A, Galgiani J N Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical
Laboratory Standards et al.
Development of interpretive breakpoints for antifungal susceptibility testing: conceptual
framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole,
and candida infections.
Clin Infect Dis.
1997;
24
(2)
235-247
Reference Ris Wihthout Link
- 34
Denning D W, Tucker R M, Hanson L H, Hamilton J R, Stevens D A.
Itraconazole therapy for cryptococcal meningitis and cryptococcosis.
Arch Intern Med.
1989;
149
(10)
2301-2308
Reference Ris Wihthout Link
- 35
Denning D W, Tucker R M, Hanson L H, Stevens D A.
Treatment of invasive aspergillosis with itraconazole.
Am J Med.
1989;
86
(6 Pt 2)
791-800
Reference Ris Wihthout Link
- 36
Gubbins P O, Krishna G, Sansone-Parsons A et al..
Pharmacokinetics and safety of oral posaconazole in neutropenic stem cell transplant
recipients.
Antimicrob Agents Chemother.
2006;
50
(6)
1993-1999
Reference Ris Wihthout Link
- 37
Ullmann A J, Cornely O A, Burchardt A et al..
Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent
febrile neutropenia or refractory invasive fungal infection.
Antimicrob Agents Chemother.
2006;
50
(2)
658-666
Reference Ris Wihthout Link
- 38
Kosoglou T, Perentesis G P, Affrime M B et al..
The effect of antacid and cimetidine on the oral absorption of the antifungal agent
SCH 39304.
J Clin Pharmacol.
1990;
30
(7)
638-642
Reference Ris Wihthout Link
- 39
Krishna G, Moton A, Ma L, Medlock M M, McLeod J.
Pharmacokinetics and absorption of posaconazole oral suspension under various gastric
conditions in healthy volunteers.
Antimicrob Agents Chemother.
2009;
53
(3)
958-966
Reference Ris Wihthout Link
- 40
Jain R, Pottinger P.
The effect of gastric acid on the absorption of posaconazole.
Clin Infect Dis.
2008;
46
(10)
1627, author reply 1627-1628
Reference Ris Wihthout Link
- 41
Krieter P, Flannery B, Musick T, Gohdes M, Martinho M, Courtney R.
Disposition of posaconazole following single-dose oral administration in healthy subjects.
Antimicrob Agents Chemother.
2004;
48
(9)
3543-3551
Reference Ris Wihthout Link
- 42
Courtney R, Radwanski E, Lim J, Laughlin M.
Pharmacokinetics of posaconazole coadministered with antacid in fasting or nonfasting
healthy men.
Antimicrob Agents Chemother.
2004;
48
(3)
804-808
Reference Ris Wihthout Link
- 43
Courtney R, Wexler D, Radwanski E, Lim J, Laughlin M.
Effect of food on the relative bioavailability of two oral formulations of posaconazole
in healthy adults.
Br J Clin Pharmacol.
2004;
57
(2)
218-222
Reference Ris Wihthout Link
- 44
Walsh T J, Raad I, Patterson T F et al..
Treatment of invasive aspergillosis with posaconazole in patients who are refractory
to or intolerant of conventional therapy: an externally controlled trial.
Clin Infect Dis.
2007;
44
(1)
2-12
Reference Ris Wihthout Link
- 45
Wexler D, Courtney R, Richards W, Banfield C, Lim J, Laughlin M.
Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way
crossover study.
Eur J Pharm Sci.
2004;
21
(5)
645-653
Reference Ris Wihthout Link
- 46
Niwa T, Shiraga T, Takagi A.
Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities
in human liver microsomes.
Biol Pharm Bull.
2005;
28
(9)
1805-1808
Reference Ris Wihthout Link
- 47
Nivoix Y, Levêque D, Herbrecht R, Koffel J C, Beretz L, Ubeaud-Sequier G.
The enzymatic basis of drug-drug interactions with systemic triazole antifungals.
Clin Pharmacokinet.
2008;
47
(12)
779-792
Reference Ris Wihthout Link
- 48 Drugs@FDA. Cancidas [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
Reference Ris Wihthout Link
- 49 Drugs@FDA. Mycamine [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
Reference Ris Wihthout Link
- 50 Drugs@FDA. Eraxis [package insert]. 2011. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/ Accessed June 29, 2011
Reference Ris Wihthout Link
- 51
Turnidge J D, Gudmundsson S, Vogelman B, Craig W A.
The postantibiotic effect of antifungal agents against common pathogenic yeasts.
J Antimicrob Chemother.
1994;
34
(1)
83-92
Reference Ris Wihthout Link
- 52
Drusano G L.
Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’.
Nat Rev Microbiol.
2004;
2
(4)
289-300
Reference Ris Wihthout Link
- 53
Warn P A, Morrissey J, Moore C B, Denning D W.
In vivo activity of amphotericin B lipid complex in immunocompromised mice against
fluconazole-resistant or fluconazole-susceptible Candida tropicalis.
Antimicrob Agents Chemother.
2000;
44
(10)
2664-2671
Reference Ris Wihthout Link
- 54
Denning D W, Warn P.
Dose range evaluation of liposomal nystatin and comparisons with amphotericin B and
amphotericin B lipid complex in temporarily neutropenic mice infected with an isolate
of Aspergillus fumigatus with reduced susceptibility to amphotericin B.
Antimicrob Agents Chemother.
1999;
43
(11)
2592-2599
Reference Ris Wihthout Link
- 55
Klepser M E, Wolfe E J, Jones R N, Nightingale C H, Pfaller M A.
Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested
against Candida albicans.
Antimicrob Agents Chemother.
1997;
41
(6)
1392-1395
Reference Ris Wihthout Link
- 56
Andes D, Stamsted T, Conklin R.
Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis
model.
Antimicrob Agents Chemother.
2001;
45
(3)
922-926
Reference Ris Wihthout Link
- 57
Andes D, Safdar N, Marchillo K, Conklin R.
Pharmacokinetic-pharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated
AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models.
Antimicrob Agents Chemother.
2006;
50
(2)
674-684
Reference Ris Wihthout Link
- 58
Ernst E J, Klepser M E, Pfaller M A.
Postantifungal effects of echinocandin, azole, and polyene antifungal agents against
Candida albicans and Cryptococcus neoformans.
Antimicrob Agents Chemother.
2000;
44
(4)
1108-1111
Reference Ris Wihthout Link
- 59
Ernst E J, Yodoi K, Roling E E, Klepser M E.
Rates and extents of antifungal activities of amphotericin B, flucytosine, fluconazole,
and voriconazole against Candida lusitaniae determined by microdilution, Etest, and
time-kill methods.
Antimicrob Agents Chemother.
2002;
46
(2)
578-581
Reference Ris Wihthout Link
- 60
Lewis R E, Wiederhold N P, Klepser M E.
In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against
Aspergillus, Fusarium, and Scedosporium spp.
Antimicrob Agents Chemother.
2005;
49
(3)
945-951
Reference Ris Wihthout Link
- 61
Wiederhold N P, Tam V H, Chi J, Prince R A, Kontoyiannis D P, Lewis R E.
Pharmacodynamic activity of amphotericin B deoxycholate is associated with peak plasma
concentrations in a neutropenic murine model of invasive pulmonary aspergillosis.
Antimicrob Agents Chemother.
2006;
50
(2)
469-473
Reference Ris Wihthout Link
- 62
Hong Y, Shaw P J, Nath C E et al..
Population pharmacokinetics of liposomal amphotericin B in pediatric patients with
malignant diseases.
Antimicrob Agents Chemother.
2006;
50
(3)
935-942
Reference Ris Wihthout Link
- 63
Andes D, van Ogtrop M.
Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic
murine disseminated candidiasis infection model.
Antimicrob Agents Chemother.
1999;
43
(9)
2116-2120
Reference Ris Wihthout Link
- 64
Andes D, Marchillo K, Stamstad T, Conklin R.
In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis
model.
Antimicrob Agents Chemother.
2003;
47
(4)
1193-1199
Reference Ris Wihthout Link
- 65
Andes D, Marchillo K, Stamstad T, Conklin R.
In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in
a murine candidiasis model.
Antimicrob Agents Chemother.
2003;
47
(10)
3165-3169
Reference Ris Wihthout Link
- 66
Andes D, Marchillo K, Conklin R et al..
Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated
candidiasis.
Antimicrob Agents Chemother.
2004;
48
(1)
137-142
Reference Ris Wihthout Link
- 67
Andes D, Forrest A, Lepak A, Nett J, Marchillo K, Lincoln L.
Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole
and Candida albicans.
Antimicrob Agents Chemother.
2006;
50
(7)
2374-2383
Reference Ris Wihthout Link
- 68
Ernst E J, Klepser M E, Pfaller M A.
In vitro interaction of fluconazole and amphotericin B administered sequentially against
Candida albicans: effect of concentration and exposure time.
Diagn Microbiol Infect Dis.
1998;
32
(3)
205-210
Reference Ris Wihthout Link
- 69
Warn P A, Sharp A, Parmar A, Majithiya J, Denning D W, Hope W W.
Pharmacokinetics and pharmacodynamics of a novel triazole, isavuconazole: mathematical
modeling, importance of tissue concentrations, and impact of immune status on antifungal
effect.
Antimicrob Agents Chemother.
2009;
53
(8)
3453-3461
Reference Ris Wihthout Link
- 70
Louie A, Drusano G L, Banerjee P et al..
Pharmacodynamics of fluconazole in a murine model of systemic candidiasis.
Antimicrob Agents Chemother.
1998;
42
(5)
1105-1109
Reference Ris Wihthout Link
- 71
Baddley J W, Patel M, Bhavnani S M, Moser S A, Andes D R.
Association of fluconazole pharmacodynamics with mortality in patients with candidemia.
Antimicrob Agents Chemother.
2008;
52
(9)
3022-3028
Reference Ris Wihthout Link
- 72
Rodríguez-Tudela J L, Almirante B, Rodríguez-Pardo D et al..
Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response
of patients with mucosal candidiasis and candidemia.
Antimicrob Agents Chemother.
2007;
51
(10)
3599-3604
Reference Ris Wihthout Link
- 73
Pai M P, Turpin R S, Garey K W.
Association of fluconazole area under the concentration-time curve/MIC and dose/MIC
ratios with mortality in nonneutropenic patients with candidemia.
Antimicrob Agents Chemother.
2007;
51
(1)
35-39
Reference Ris Wihthout Link
- 74
Pfaller M A, Diekema D J, Rex J H et al..
Correlation of MIC with outcome for Candida species tested against voriconazole: analysis
and proposal for interpretive breakpoints.
J Clin Microbiol.
2006;
44
(3)
819-826
Reference Ris Wihthout Link
- 75
Mavridou E, Brüggemann R J, Melchers W J, Mouton J W, Verweij P E.
Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with
mutations in the cyp51A gene.
Antimicrob Agents Chemother.
2010;
54
(2)
860-865
Reference Ris Wihthout Link
- 76
Howard S J, Lestner J M, Sharp A et al..
Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis:
clinical implications for antifungal therapy.
J Infect Dis.
2011;
203
(9)
1324-1332
Reference Ris Wihthout Link
- 77
Mavridou E, Bruggemann R J, Melchers W J, Verweij P E, Mouton J W.
Impact of cyp51A mutations on the pharmacokinetic and pharmacodynamic properties of
voriconazole in a murine model of disseminated aspergillosis.
Antimicrob Agents Chemother.
2010;
54
(11)
4758-4764
Reference Ris Wihthout Link
- 78
Andes D, Pascual A, Marchetti O.
Antifungal therapeutic drug monitoring: established and emerging indications.
Antimicrob Agents Chemother.
2009;
53
(1)
24-34
Reference Ris Wihthout Link
- 79
Ernst E J, Klepser M E, Ernst M E, Messer S A, Pfaller M A.
In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods.
Diagn Microbiol Infect Dis.
1999;
33
(2)
75-80
Reference Ris Wihthout Link
- 80
Ernst E J, Roling E E, Petzold C R, Keele D J, Klepser M E.
In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill,
and postantifungal-effect studies.
Antimicrob Agents Chemother.
2002;
46
(12)
3846-3853
Reference Ris Wihthout Link
- 81
Andes D, Diekema D J, Pfaller M A et al..
In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine
candidiasis model.
Antimicrob Agents Chemother.
2008;
52
(2)
539-550
Reference Ris Wihthout Link
- 82
Andes D, Marchillo K, Lowther J, Bryskier A, Stamstad T, Conklin R.
In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis
model.
Antimicrob Agents Chemother.
2003;
47
(4)
1187-1192
Reference Ris Wihthout Link
- 83
Andes D, Safdar N.
Efficacy of micafungin for the treatment of candidemia.
Eur J Clin Microbiol Infect Dis.
2005;
24
(10)
662-664
Reference Ris Wihthout Link
- 84
Andes D R, Diekema D J, Pfaller M A, Marchillo K, Bohrmueller J.
In vivo pharmacodynamic target investigation for micafungin against Candida albicans
and C. glabrata in a neutropenic murine candidiasis model.
Antimicrob Agents Chemother.
2008;
52
(10)
3497-3503
Reference Ris Wihthout Link
- 85
Gumbo T, Drusano G L, Liu W et al..
Once-weekly micafungin therapy is as effective as daily therapy for disseminated candidiasis
in mice with persistent neutropenia.
Antimicrob Agents Chemother.
2007;
51
(3)
968-974
Reference Ris Wihthout Link
- 86
Gumbo T, Drusano G L, Liu W et al..
Anidulafungin pharmacokinetics and microbial response in neutropenic mice with disseminated
candidiasis.
Antimicrob Agents Chemother.
2006;
50
(11)
3695-3700
Reference Ris Wihthout Link
- 87
Groll A H, Mickiene D, Petraitis V et al..
Compartmental pharmacokinetics and tissue distribution of the antifungal echinocandin
lipopeptide micafungin (FK463) in rabbits.
Antimicrob Agents Chemother.
2001;
45
(12)
3322-3327
Reference Ris Wihthout Link
- 88
Hope W W, Mickiene D, Petraitis V et al..
The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous
Candida meningoencephalitis: implications for echinocandin therapy in neonates.
J Infect Dis.
2008;
197
(1)
163-171
Reference Ris Wihthout Link
- 89
Clancy C J, Huang H, Cheng S, Derendorf H, Nguyen M H.
Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis,
and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect
experiments.
Antimicrob Agents Chemother.
2006;
50
(7)
2569-2572
Reference Ris Wihthout Link
- 90
Walsh T J, Lee J W, Kelly P et al..
Antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3-beta-glucan
synthetase inhibitor, during continuous and intermittent intravenous infusions in
treatment of experimental disseminated candidiasis.
Antimicrob Agents Chemother.
1991;
35
(7)
1321-1328
Reference Ris Wihthout Link
- 91
Kurtz M B, Heath I B, Marrinan J, Dreikorn S, Onishi J, Douglas C.
Morphological effects of lipopeptides against Aspergillus fumigatus correlate with
activities against (1,3)-beta-D-glucan synthase.
Antimicrob Agents Chemother.
1994;
38
(7)
1480-1489
Reference Ris Wihthout Link
- 92
Wiederhold N P, Kontoyiannis D P, Chi J, Prince R A, Tam V H, Lewis R E.
Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis:
evidence of concentration-dependent activity.
J Infect Dis.
2004;
190
(8)
1464-1471
Reference Ris Wihthout Link
- 93
Lewis R E, Albert N D, Kontoyiannis D P.
Comparison of the dose-dependent activity and paradoxical effect of caspofungin and
micafungin in a neutropenic murine model of invasive pulmonary aspergillosis.
J Antimicrob Chemother.
2008;
61
(5)
1140-1144
Reference Ris Wihthout Link
- 94
Lewis R E, Leventakos K, Liao G, Kontoyiannis D P.
Efficacy of caspofungin in neutropenic and corticosteroid-immunosuppressed murine
models of invasive pulmonary mucormycosis.
Antimicrob Agents Chemother.
2011;
55
(7)
3584-3587
Reference Ris Wihthout Link
- 95
Lewis R E, Liao G, Hou J, Prince R A, Kontoyiannis D P.
Comparative in vivo dose-dependent activity of caspofungin and anidulafungin against
echinocandin-susceptible and -resistant Aspergillus fumigatus.
J Antimicrob Chemother.
2011;
66
(6)
1324-1331
Reference Ris Wihthout Link
- 96
Perfect J R, Dismukes W E, Dromer F et al..
Clinical practice guidelines for the management of cryptococcal disease: 2010 update
by the infectious diseases society of america.
Clin Infect Dis.
2010;
50
(3)
291-322
Reference Ris Wihthout Link
- 97
Lewis R E, Prince R A, Chi J, Kontoyiannis D P.
Itraconazole preexposure attenuates the efficacy of subsequent amphotericin B therapy
in a murine model of acute invasive pulmonary aspergillosis.
Antimicrob Agents Chemother.
2002;
46
(10)
3208-3214
Reference Ris Wihthout Link
- 98
Meletiadis J, Petraitis V, Petraitiene R et al..
Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: in vitro
and in vivo correlation.
J Infect Dis.
2006;
194
(7)
1008-1018
Reference Ris Wihthout Link
- 99
Clemons K V, Espiritu M, Parmar R, Stevens D A.
Comparative efficacies of conventional amphotericin b, liposomal amphotericin B (AmBisome),
caspofungin, micafungin, and voriconazole alone and in combination against experimental
murine central nervous system aspergillosis.
Antimicrob Agents Chemother.
2005;
49
(12)
4867-4875
Reference Ris Wihthout Link
- 100
Petraitis V, Petraitiene R, Hope W W et al..
Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro
and in vivo correlations of the concentration- and dose- dependent interactions between
anidulafungin and voriconazole by Bliss independence drug interaction analysis.
Antimicrob Agents Chemother.
2009;
53
(6)
2382-2391
Reference Ris Wihthout Link
- 101
Petraitis V, Petraitiene R, Sarafandi A A et al..
Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic
interaction between an antifungal triazole and an echinocandin.
J Infect Dis.
2003;
187
(12)
1834-1843
Reference Ris Wihthout Link
- 102
Meletiadis J, Stergiopoulou T, O’Shaughnessy E M, Peter J, Walsh T J.
Concentration-dependent synergy and antagonism within a triple antifungal drug combination
against Aspergillus species: analysis by a new response surface model.
Antimicrob Agents Chemother.
2007;
51
(6)
2053-2064
Reference Ris Wihthout Link
- 103
Kirkpatrick W R, Perea S, Coco B J, Patterson T F.
Efficacy of caspofungin alone and in combination with voriconazole in a Guinea pig
model of invasive aspergillosis.
Antimicrob Agents Chemother.
2002;
46
(8)
2564-2568
Reference Ris Wihthout Link
- 104
Luque J C, Clemons K V, Stevens D A.
Efficacy of micafungin alone or in combination against systemic murine aspergillosis.
Antimicrob Agents Chemother.
2003;
47
(4)
1452-1455
Reference Ris Wihthout Link
- 105
MacCallum D M, Whyte J A, Odds F C.
Efficacy of caspofungin and voriconazole combinations in experimental aspergillosis.
Antimicrob Agents Chemother.
2005;
49
(9)
3697-3701
Reference Ris Wihthout Link
- 106
Demchok J P, Meletiadis J, Roilides E, Walsh T J.
Comparative pharmacodynamic interaction analysis of triple combinations of caspofungin
and voriconazole or ravuconazole with subinhibitory concentrations of amphotericin
B against Aspergillus spp.
Mycoses.
2010;
53
(3)
239-245
Reference Ris Wihthout Link
- 107
O’Shaughnessy E M, Meletiadis J, Stergiopoulou T, Demchok J P, Walsh T J.
Antifungal interactions within the triple combination of amphotericin B, caspofungin
and voriconazole against Aspergillus species.
J Antimicrob Chemother.
2006;
58
(6)
1168-1176
Reference Ris Wihthout Link
- 108
Nivoix Y, Zamfir A, Lutun P et al..
Combination of caspofungin and an azole or an amphotericin B formulation in invasive
fungal infections.
J Infect.
2006;
52
(1)
67-74
Reference Ris Wihthout Link
- 109
Singh N, Limaye A P, Forrest G et al..
Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis
in solid organ transplant recipients: a prospective, multicenter, observational study.
Transplantation.
2006;
81
(3)
320-326
Reference Ris Wihthout Link
- 110
Marr K A, Boeckh M, Carter R A, Kim H W, Corey L.
Combination antifungal therapy for invasive aspergillosis.
Clin Infect Dis.
2004;
39
(6)
797-802
Reference Ris Wihthout Link
- 111
Denning D W, Marr K A, Lau W M et al..
Micafungin (FK463), alone or in combination with other systemic antifungal agents,
for the treatment of acute invasive aspergillosis.
J Infect.
2006;
53
(5)
337-349
Reference Ris Wihthout Link
- 112
Kontoyiannis D P, Ratanatharathorn V, Young J A et al..
Micafungin alone or in combination with other systemic antifungal therapies in hematopoietic
stem cell transplant recipients with invasive aspergillosis.
Transpl Infect Dis.
2009;
11
(1)
89-93
Reference Ris Wihthout Link
- 113
Thomas A, Korb V, Guillemain R et al..
Clinical outcomes of lung-transplant recipients treated by voriconazole and caspofungin
combination in aspergillosis.
J Clin Pharm Ther.
2010;
35
(1)
49-53
Reference Ris Wihthout Link
- 114
Maertens J, Glasmacher A, Herbrecht R Caspofungin Combination Therapy Study Group et al.
Multicenter, noncomparative study of caspofungin in combination with other antifungals
as salvage therapy in adults with invasive aspergillosis.
Cancer.
2006;
107
(12)
2888-2897
Reference Ris Wihthout Link
- 115 ClinicalTrials.gov .A prospective, randomized trial comparing the efficacy of anidulafungin and voriconazole
in combination to that of voriconazole alone when used for primary therapy of proven
or probable invasive aspergillosis. 2010. Available at: http://clinicaltrials.gov/C+2/show/NCT0053147 Accessed December 22, 2010
Reference Ris Wihthout Link
David R. AndesM.D.
Department of Medicine, University of Wisconsin–Madison School of Medicine and Public
Health, MFCB, Rm. 5211
1685 Highland Ave., Madison, WI 53705-2281
eMail: dra@medicine.wisc.edu