Semin Liver Dis 2011; 31(4): 356-374
DOI: 10.1055/s-0031-1297925
© Thieme Medical Publishers

New Insights into the HCV Quasispecies and Compartmentalization

Patrizia Farci1
  • 1Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
Further Information

Publication History

Publication Date:
21 December 2011 (online)

ABSTRACT

Hepatitis C virus (HCV) is a hepatotropic RNA virus with an extraordinary propensity to persist in the vast majority of infected individuals. During replication, because of the inherent infidelity of the viral RNA polymerase, each progeny RNA genome contains mutations that lead to a continuous diversification of the viral population. Consequently, HCV circulates in vivo as a quasispecies, which is a dynamic distribution of divergent but closely related genomes subjected to a continuous process of genetic variation, competition, and selection. This genomic heterogeneity confers a remarkable advantage to the viral population allowing for a rapid adaptation to a changing environment when the virus is subject to selective constraints exerted by the host, such as antiviral immunity, or external to the host, such as antiviral therapy. The large reservoir of variants provided by the quasispecies represents a great challenge for the control of HCV infection and has important biologic implications for viral persistence, host cell tropism, antiviral drug resistance, and development of an HCV vaccine. This review discusses the molecular mechanisms of HCV genetic variation and the biologic and clinical relevance of the quasispecies nature of HCV.

REFERENCES

  • 1 Domingo E, Sabo D, Taniguchi T, Weissmann C. Nucleotide sequence heterogeneity of an RNA phage population.  Cell. 1978;  13 (4) 735-744
  • 2 Domingo E, Wain-Hobson S. The 30th anniversary of quasispecies. Meeting on ‘Quasispecies: past, present and future’.  EMBO Rep. 2009;  10 (5) 444-448
  • 3 Eigen M. Selforganization of matter and the evolution of biological macromolecules.  Naturwissenschaften. 1971;  58 (10) 465-523
  • 4 Eigen M, Schuster P. The Hypercycle. A Principle of Natural Self-Organization. Berlin: Springer-Verlag; 1979
  • 5 Houghton M. Hepatitis C virus. In: Fields B N, Knipe D M, Howley P M, Chanock R H, eds. Fields Virology. 3rd ed. Philadelphia, PA: Lippincott-Raven; 1996: 1035-1058
  • 6 Lindenbach B D, Rice C M. Unravelling hepatitis C virus replication from genome to function.  Nature. 2005;  436 (7053) 933-938
  • 7 Branch A D, Stump D D, Gutierrez J A, Eng F, Walewski J L. The hepatitis C virus alternate reading frame (ARF) and its family of novel products: the alternate reading frame protein/F-protein, the double-frameshift protein, and others.  Semin Liver Dis. 2005;  25 (1) 105-117
  • 8 Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. Rapid evolution of RNA genomes.  Science. 1982;  215 (4540) 1577-1585
  • 9 Domingo E. Virus evolution. In: Knipe D M, Howley P F, eds. Fields Virology. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007: 389-421
  • 10 Duffy S, Shackelton L A, Holmes E C. Rates of evolutionary change in viruses: patterns and determinants.  Nat Rev Genet. 2008;  9 (4) 267-276
  • 11 Holland J J, Domingo E, de la Torre J C, Steinhauer D A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis.  J Virol. 1990;  64 (8) 3960-3962
  • 12 Crotty S, Cameron C E, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin.  Proc Natl Acad Sci U S A. 2001;  98 (12) 6895-6900
  • 13 Kalinina O, Norder H, Mukomolov S, Magnius L O. A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg.  J Virol. 2002;  76 (8) 4034-4043
  • 14 Yokoyama K, Takahashi M, Nishizawa T et al.. Identification and characterization of a natural inter-genotypic (2b/1b) recombinant hepatitis C virus in Japan.  Arch Virol. 2011;  156 (9) 1591-1601
  • 15 Neumann A U, Lam N P, Dahari H et al.. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy.  Science. 1998;  282 (5386) 103-107
  • 16 Martell M, Esteban J I, Quer J et al.. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution.  J Virol. 1992;  66 (5) 3225-3229
  • 17 de la Torre J C, Holland J J. RNA virus quasispecies populations can suppress vastly superior mutant progeny.  J Virol. 1990;  64 (12) 6278-6281
  • 18 Domingo E, Martin V, Perales C et al.. Viruses as quasispecies: biological implications.  Curr Top Microbiol Immunol. 2006;  299 51-82
  • 19 Domingo E, Holland J J. RNA virus mutations and fitness for survival.  Annu Rev Microbiol. 1997;  51 151-178
  • 20 Ruiz-Jarabo C M, Arias A, Baranowski E, Escarmís C, Domingo E. Memory in viral quasispecies.  J Virol. 2000;  74 (8) 3543-3547
  • 21 Eigen M, Biebricher C K. Sequence space and quasispecies distribution. In: Domingo E, Ahlquist P, Holland J J, eds. RNA Genetics. Vol. 3. Boca Raton, FL: CRC Press; 1988: 211-245
  • 22 Steinhauer D A, Holland J J. Rapid evolution of RNA viruses.  Annu Rev Microbiol. 1987;  41 409-433
  • 23 Ogata N, Alter H J, Miller R H, Purcell R H. Nucleotide sequence and mutation rate of the H strain of hepatitis C virus.  Proc Natl Acad Sci U S A. 1991;  88 (8) 3392-3396
  • 24 Okamoto H, Kojima M, Okada S et al.. Genetic drift of hepatitis C virus during an 8.2-year infection in a chimpanzee: variability and stability.  Virology. 1992;  190 (2) 894-899
  • 25 Lu L, Nakano T, Orito E, Mizokami M, Robertson B H. Evaluation of accumulation of hepatitis C virus mutations in a chronically infected chimpanzee: comparison of the core, E1, HVR1, and NS5b regions.  J Virol. 2001;  75 (6) 3004-3009
  • 26 Farci P, Alter H J, Wong D et al.. A long-term study of hepatitis C virus replication in non-A, non-B hepatitis.  N Engl J Med. 1991;  325 (2) 98-104
  • 27 Thimme R, Oldach D, Chang K M, Steiger C, Ray S C, Chisari F V. Determinants of viral clearance and persistence during acute hepatitis C virus infection.  J Exp Med. 2001;  194 (10) 1395-1406
  • 28 Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence.  J Clin Invest. 2009;  119 (7) 1745-1754
  • 29 Walker C M. Adaptive immunity to the hepatitis C virus.  Adv Virus Res. 2010;  78 43-86
  • 30 Dahari H, Major M, Zhang X et al.. Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production.  Gastroenterology. 2005;  128 (4) 1056-1066
  • 31 Su A I, Pezacki J P, Wodicka L et al.. Genomic analysis of the host response to hepatitis C virus infection.  Proc Natl Acad Sci U S A. 2002;  99 (24) 15669-15674
  • 32 Gale Jr M, Foy E M. Evasion of intracellular host defence by hepatitis C virus.  Nature. 2005;  436 (7053) 939-945
  • 33 Thimme R, Bukh J, Spangenberg H C et al.. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease.  Proc Natl Acad Sci U S A. 2002;  99 (24) 15661-15668
  • 34 Bertoletti A, Ferrari C. Kinetics of the immune response during HBV and HCV infection.  Hepatology. 2003;  38 (1) 4-13
  • 35 Lohmann V, Körner F, Koch J, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line.  Science. 1999;  285 (5424) 110-113
  • 36 Lohmann V, Körner F, Dobierzewska A, Bartenschlager R. Mutations in hepatitis C virus RNAs conferring cell culture adaptation.  J Virol. 2001;  75 (3) 1437-1449
  • 37 Blight K J, Kolykhalov A A, Rice C M. Efficient initiation of HCV RNA replication in cell culture.  Science. 2000;  290 (5498) 1972-1974
  • 38 Smith D B, Mellor J, Jarvis L M The International HCV Collaborative Study Group et al. Variation of the hepatitis C virus 5′ non-coding region: implications for secondary structure, virus detection and typing.  J Gen Virol. 1995;  76 (Pt 7) 1749-1761
  • 39 Bukh J, Miller R H, Purcell R H. Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes.  Semin Liver Dis. 1995;  15 (1) 41-63
  • 40 Bukh J, Pietschmann T, Lohmann V et al.. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees.  Proc Natl Acad Sci U S A. 2002;  99 (22) 14416-14421
  • 41 Ray S C, Mao Q, Lanford R E et al.. Hypervariable region 1 sequence stability during hepatitis C virus replication in chimpanzees.  J Virol. 2000;  74 (7) 3058-3066
  • 42 Prince A M, Pawlotsky J M, Soulier A et al.. Hepatitis C virus replication kinetics in chimpanzees with self-limited and chronic infections.  J Viral Hepat. 2004;  11 (3) 236-242
  • 43 Bassett S E, Thomas D L, Brasky K M, Lanford R E. Viral persistence, antibody to E1 and E2, and hypervariable region 1 sequence stability in hepatitis C virus-inoculated chimpanzees.  J Virol. 1999;  73 (2) 1118-1126
  • 44 Bukh J. A critical role for the chimpanzee model in the study of hepatitis C.  Hepatology. 2004;  39 (6) 1469-1475
  • 45 Gómez J, Martell M, Quer J, Cabot B, Esteban J I. Hepatitis C viral quasispecies.  J Viral Hepat. 1999;  6 (1) 3-16
  • 46 Forns X, Bukh J, Purcell R H, Emerson S U. How Escherichia coli can bias the results of molecular cloning: preferential selection of defective genomes of hepatitis C virus during the cloning procedure.  Proc Natl Acad Sci U S A. 1997;  94 (25) 13909-13914
  • 47 Fishman S L, Branch A D. The quasispecies nature and biological implications of the hepatitis C virus.  Infect Genet Evol. 2009;  9 (6) 1158-1167
  • 48 Verbinnen T, Van Marck H, Vandenbroucke I et al.. Tracking the evolution of multiple in vitro hepatitis C virus replicon variants under protease inhibitor selection pressure by 454 deep sequencing.  J Virol. 2010;  84 (21) 11124-11133
  • 49 Hiraga N, Imamura M, Abe H et al.. Rapid emergence of telaprevir resistant hepatitis C virus strain from wildtype clone in vivo.  Hepatology. 2011;  Epub ahead of print
  • 50 Wang G P, Sherrill-Mix S A, Chang K M, Quince C, Bushman F D. Hepatitis C virus transmission bottlenecks analyzed by deep sequencing.  J Virol. 2010;  84 (12) 6218-6228
  • 51 Bull R A, Luciani F, McElroy K et al.. Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection.  PLoS Pathog. 2011;  7 (9) e1002243
  • 52 Zinkernagel R M. On natural and artificial vaccinations.  Annu Rev Immunol. 2003;  21 515-546
  • 53 Farci P, Alter H J, Wong D C et al.. Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization.  Proc Natl Acad Sci U S A. 1994;  91 (16) 7792-7796
  • 54 Shimizu Y K, Hijikata M, Iwamoto A et al.. Neutralizing antibodies against hepatitis C virus and the emergence of neutralization escape mutant viruses.  J Virol. 1994;  68 (3) 1494-1500
  • 55 Farci P, Shimoda A, Wong D et al.. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein.  Proc Natl Acad Sci U S A. 1996;  93 (26) 15394-15399
  • 56 Shimizu Y K, Igarashi H, Kiyohara T et al.. A hyperimmune serum against a synthetic peptide corresponding to the hypervariable region 1 of hepatitis C virus can prevent viral infection in cell cultures.  Virology. 1996;  223 (2) 409-412
  • 57 Weiner A J, Geysen H M, Christopherson C et al.. Evidence for immune selection of hepatitis C virus (HCV) putative envelope glycoprotein variants: potential role in chronic HCV infections.  Proc Natl Acad Sci U S A. 1992;  89 (8) 3468-3472
  • 58 Zeisel M B, Fafi-Kremer S, Fofana I et al.. Neutralizing antibodies in hepatitis C virus infection.  World J Gastroenterol. 2007;  13 (36) 4824-4830
  • 59 Zibert A, Meisel H, Kraas W et al.. Early antibody response against hypervariable region 1 is associated with acute self-limiting infections of hepatitis C virus.  Hepatology. 1997;  25 (5) 1245-1249
  • 60 Kumar U, Monjardino J, Thomas H C. Hypervariable region of hepatitis C virus envelope glycoprotein (E2/NS1) in an agammaglobulinemic patient.  Gastroenterology. 1994;  106 (4) 1072-1075
  • 61 Booth J C, Kumar U, Webster D, Monjardino J, Thomas H C. Comparison of the rate of sequence variation in the hypervariable region of E2/NS1 region of hepatitis C virus in normal and hypogammaglobulinemic patients.  Hepatology. 1998;  27 (1) 223-227
  • 62 Prince A M, Brotman B, Lee D H et al.. Significance of the anti-E2 response in self-limited and chronic hepatitis C virus infections in chimpanzees and in humans.  J Infect Dis. 1999;  180 (4) 987-991
  • 63 Major M E, Dahari H, Mihalik K et al.. Hepatitis C virus kinetics and host responses associated with disease and outcome of infection in chimpanzees.  Hepatology. 2004;  39 (6) 1709-1720
  • 64 Bartosch B, Dubuisson J, Cosset F L. Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes.  J Exp Med. 2003;  197 (5) 633-642
  • 65 Hsu M, Zhang J, Flint M et al.. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles.  Proc Natl Acad Sci U S A. 2003;  100 (12) 7271-7276
  • 66 Baumert T F, Ito S, Wong D T, Liang T J. Hepatitis C virus structural proteins assemble into viruslike particles in insect cells.  J Virol. 1998;  72 (5) 3827-3836
  • 67 Wakita T, Pietschmann T, Kato T et al.. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome.  Nat Med. 2005;  11 (7) 791-796
  • 68 Lindenbach B D, Evans M J, Syder A J et al.. Complete replication of hepatitis C virus in cell culture.  Science. 2005;  309 (5734) 623-626
  • 69 Bartosch B, Bukh J, Meunier J C et al.. In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes.  Proc Natl Acad Sci U S A. 2003;  100 (24) 14199-14204
  • 70 Meunier J C, Engle R E, Faulk K et al.. Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1.  Proc Natl Acad Sci U S A. 2005;  102 (12) 4560-4565
  • 71 Logvinoff C, Major M E, Oldach D et al.. Neutralizing antibody response during acute and chronic hepatitis C virus infection.  Proc Natl Acad Sci U S A. 2004;  101 (27) 10149-10154
  • 72 Meunier J C, Bukh J, Diaz G et al.. Neutralizing antibodies to HCV in perinatally infected children followed prospectively.  J Infect Dis. 2011;  204 (11) 1741-1745
  • 73 Pestka J M, Zeisel M B, Bläser E et al.. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C.  Proc Natl Acad Sci U S A. 2007;  104 (14) 6025-6030
  • 74 von Hahn T, Yoon J C, Alter H et al.. Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo.  Gastroenterology. 2007;  132 (2) 667-678
  • 75 Dowd K A, Netski D M, Wang X H, Cox A L, Ray S C. Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus.  Gastroenterology. 2009;  136 (7) 2377-2386
  • 76 Lavillette D, Morice Y, Germanidis G et al.. Human serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate with viral replication kinetics at the acute phase of hepatitis C virus infection.  J Virol. 2005;  79 (10) 6023-6034
  • 77 Bukh J, Thimme R, Meunier J C et al.. Previously infected chimpanzees are not consistently protected against reinfection or persistent infection after reexposure to the identical hepatitis C virus strain.  J Virol. 2008;  82 (16) 8183-8195
  • 78 Penin F, Combet C, Germanidis G, Frainais P O, Deléage G, Pawlotsky J M. Conservation of the conformation and positive charges of hepatitis C virus E2 envelope glycoprotein hypervariable region 1 points to a role in cell attachment.  J Virol. 2001;  75 (12) 5703-5710
  • 79 Vieyres G, Dubuisson J, Patel A H. Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein.  J Gen Virol. 2011;  92 (Pt 3) 494-506
  • 80 Prentoe J, Jensen T B, Meuleman P et al.. Hypervariable region 1 differentially impacts viability of hepatitis C virus strains of genotypes 1 to 6 and impairs virus neutralization.  J Virol. 2011;  85 (5) 2224-2234
  • 81 Forns X, Thimme R, Govindarajan S et al.. Hepatitis C virus lacking the hypervariable region 1 of the second envelope protein is infectious and causes acute resolving or persistent infection in chimpanzees.  Proc Natl Acad Sci U S A. 2000;  97 (24) 13318-13323
  • 82 Bankwitz D, Steinmann E, Bitzegeio J et al.. Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes.  J Virol. 2010;  84 (11) 5751-5763
  • 83 Zolla-Pazner S, Cardozo T. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design.  Nat Rev Immunol. 2010;  10 (7) 527-535
  • 84 Ray S C, Wang Y M, Laeyendecker O, Ticehurst J R, Villano S A, Thomas D L. Acute hepatitis C virus structural gene sequences as predictors of persistent viremia: hypervariable region 1 as a decoy.  J Virol. 1999;  73 (4) 2938-2946
  • 85 Keck Z Y, Op De Beeck A, Hadlock K G et al.. Hepatitis C virus E2 has three immunogenic domains containing conformational epitopes with distinct properties and biological functions.  J Virol. 2004;  78 (17) 9224-9232
  • 86 Keck Z Y, Li S H, Xia J et al.. Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity.  J Virol. 2009;  83 (12) 6149-6160
  • 87 Diepolder H M, Zachoval R, Hoffmann R M et al.. Possible mechanism involving T-lymphocyte response to non-structural protein 3 in viral clearance in acute hepatitis C virus infection.  Lancet. 1995;  346 (8981) 1006-1007
  • 88 Gerlach J T, Diepolder H M, Jung M C et al.. Recurrence of hepatitis C virus after loss of virus-specific CD4( + ) T-cell response in acute hepatitis C.  Gastroenterology. 1999;  117 (4) 933-941
  • 89 Cooper S, Erickson A L, Adams E J et al.. Analysis of a successful immune response against hepatitis C virus.  Immunity. 1999;  10 (4) 439-449
  • 90 Lechner F, Wong D K, Dunbar P R et al.. Analysis of successful immune responses in persons infected with hepatitis C virus.  J Exp Med. 2000;  191 (9) 1499-1512
  • 91 Grakoui A, Shoukry N H, Woollard D J et al.. HCV persistence and immune evasion in the absence of memory T cell help.  Science. 2003;  302 (5645) 659-662
  • 92 Shoukry N H, Grakoui A, Houghton M et al.. Memory CD8 + T cells are required for protection from persistent hepatitis C virus infection.  J Exp Med. 2003;  197 (12) 1645-1655
  • 93 Gottwein J M, Scheel T K, Callendret B et al.. Novel infectious cDNA clones of hepatitis C virus genotype 3a (strain S52) and 4a (strain ED43): genetic analyses and in vivo pathogenesis studies.  J Virol. 2010;  84 (10) 5277-5293
  • 94 Klenerman P, Thimme R. T cell responses in hepatitis C: the good, the bad and the unconventional.  Gut. 2011;  Epub ahead of print
  • 95 Bengsch B, Seigel B, Ruhl M et al.. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8 + T cells is linked to antigen recognition and T cell differentiation.  PLoS Pathog. 2010;  6 (6) e1000947
  • 96 Neumann-Haefelin C, Thimme R. Success and failure of virus-specific T cell responses in hepatitis C virus infection.  Dig Dis. 2011;  29 (4) 416-422
  • 97 Weiner A, Erickson A L, Kansopon J et al.. Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant.  Proc Natl Acad Sci U S A. 1995;  92 (7) 2755-2759
  • 98 Erickson A L, Kimura Y, Igarashi S et al.. The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes.  Immunity. 2001;  15 (6) 883-895
  • 99 Chang K M, Rehermann B, McHutchison J G et al.. Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus.  J Clin Invest. 1997;  100 (9) 2376-2385
  • 100 Timm J, Lauer G M, Kavanagh D G et al.. CD8 epitope escape and reversion in acute HCV infection.  J Exp Med. 2004;  200 (12) 1593-1604
  • 101 Bowen D G, Walker C M. Mutational escape from CD8 + T cell immunity: HCV evolution, from chimpanzees to man.  J Exp Med. 2005;  201 (11) 1709-1714
  • 102 Cox A L, Mosbruger T, Mao Q et al.. Cellular immune selection with hepatitis C virus persistence in humans.  J Exp Med. 2005;  201 (11) 1741-1752
  • 103 Ray S C, Fanning L, Wang X H et al.. Divergent and convergent evolution after a common-source outbreak of hepatitis C virus.  J Exp Med. 2005;  201 (11) 1753-1759
  • 104 Tsai S L, Chen Y M, Chen M H et al.. Hepatitis C virus variants circumventing cytotoxic T lymphocyte activity as a mechanism of chronicity.  Gastroenterology. 1998;  115 (4) 954-965
  • 105 Guglietta S, Garbuglia A R, Salichos L et al.. Impact of viral selected mutations on T cell mediated immunity in chronically evolving and self limiting acute HCV infection.  Virology. 2009;  386 (2) 398-406
  • 106 Tester I, Smyk-Pearson S, Wang P et al.. Immune evasion versus recovery after acute hepatitis C virus infection from a shared source.  J Exp Med. 2005;  201 (11) 1725-1731
  • 107 Fernandez J, Taylor D, Morhardt D R et al.. Long-term persistence of infection in chimpanzees inoculated with an infectious hepatitis C virus clone is associated with a decrease in the viral amino acid substitution rate and low levels of heterogeneity.  J Virol. 2004;  78 (18) 9782-9789
  • 108 Kuntzen T, Timm J, Berical A et al.. Viral sequence evolution in acute hepatitis C virus infection.  J Virol. 2007;  81 (21) 11658-11668
  • 109 Ruhl M, Knuschke T, Schewior K East German HCV Study Group et al. CD8 + T-cell response promotes evolution of hepatitis C virus nonstructural proteins.  Gastroenterology. 2011;  140 (7) 2064-2073
  • 110 Neumann-Haefelin C, McKiernan S, Ward S et al.. Dominant influence of an HLA-B27 restricted CD8 + T cell response in mediating HCV clearance and evolution.  Hepatology. 2006;  43 (3) 563-572
  • 111 Kim A Y, Kuntzen T, Timm J et al.. Spontaneous control of HCV is associated with expression of HLA-B 57 and preservation of targeted epitopes.  Gastroenterology. 2011;  140 (2) 686-696, e1
  • 112 Cox A L, Mosbruger T, Lauer G M, Pardoll D, Thomas D L, Ray S C. Comprehensive analyses of CD8 + T cell responses during longitudinal study of acute human hepatitis C.  Hepatology. 2005;  42 (1) 104-112
  • 113 Neumann-Haefelin C, Timm J, Spangenberg H C et al.. Virological and immunological determinants of intrahepatic virus-specific CD8 + T-cell failure in chronic hepatitis C virus infection.  Hepatology. 2008;  47 (6) 1824-1836
  • 114 Komatsu H, Lauer G, Pybus O G et al.. Do antiviral CD8 + T cells select hepatitis C virus escape mutants? Analysis in diverse epitopes targeted by human intrahepatic CD8 + T lymphocytes.  J Viral Hepat. 2006;  13 (2) 121-130
  • 115 Uebelhoer L, Han J H, Callendret B et al.. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness.  PLoS Pathog. 2008;  4 (9) e1000143
  • 116 Liu L, Fisher B E, Dowd K A, Astemborski J, Cox A L, Ray S C. Acceleration of hepatitis C virus envelope evolution in humans is consistent with progressive humoral immune selection during the transition from acute to chronic infection.  J Virol. 2010;  84 (10) 5067-5077
  • 117 Wang H, Eckels D D. Mutations in immunodominant T cell epitopes derived from the nonstructural 3 protein of hepatitis C virus have the potential for generating escape variants that may have important consequences for T cell recognition.  J Immunol. 1999;  162 (7) 4177-4183
  • 118 Fleming V M, Harcourt G, Barnes E, Klenerman P. Virological footprint of CD4 + T-cell responses during chronic hepatitis C virus infection.  J Gen Virol. 2010;  91 (Pt 6) 1396-1406
  • 119 Fuller M J, Shoukry N H, Gushima T et al.. Selection-driven immune escape is not a significant factor in the failure of CD4 T cell responses in persistent hepatitis C virus infection.  Hepatology. 2010;  51 (2) 378-387
  • 120 Farci P, Quinti I, Farci S et al.. Evolution of hepatitis C viral quasispecies and hepatic injury in perinatally infected children followed prospectively.  Proc Natl Acad Sci U S A. 2006;  103 (22) 8475-8480
  • 121 Farci P, Shimoda A, Coiana A et al.. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies.  Science. 2000;  288 (5464) 339-344
  • 122 Laskus T, Wilkinson J, Gallegos-Orozco J F et al.. Analysis of hepatitis C virus quasispecies transmission and evolution in patients infected through blood transfusion.  Gastroenterology. 2004;  127 (3) 764-776
  • 123 Farci P, Strazzera R, Alter H J et al.. Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome.  Proc Natl Acad Sci U S A. 2002;  99 (5) 3081-3086
  • 124 Manzin A, Solforosi L, Debiaggi M et al.. Dominant role of host selective pressure in driving hepatitis C virus evolution in perinatal infection.  J Virol. 2000;  74 (9) 4327-4334
  • 125 Urbani S, Amadei B, Cariani E et al.. The impairment of CD8 responses limits the selection of escape mutations in acute hepatitis C virus infection.  J Immunol. 2005;  175 (11) 7519-7529
  • 126 Alter H J, Seeff L B. Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome.  Semin Liver Dis. 2000;  20 (1) 17-35
  • 127 Yeo A E, Ghany M, Conry-Cantilena C et al.. Stability of HCV-RNA level and its lack of correlation with disease severity in asymptomatic chronic hepatitis C virus carriers.  J Viral Hepat. 2001;  8 (4) 256-263
  • 128 Honda M, Kaneko S, Sakai A, Unoura M, Murakami S, Kobayashi K. Degree of diversity of hepatitis C virus quasispecies and progression of liver disease.  Hepatology. 1994;  20 (5) 1144-1151
  • 129 Koizumi K, Enomoto N, Kurosaki M et al.. Diversity of quasispecies in various disease stages of chronic hepatitis C virus infection and its significance in interferon treatment.  Hepatology. 1995;  22 (1) 30-35
  • 130 Hayashi J, Kishihara Y, Yamaji K et al.. Hepatitis C viral quasispecies and liver damage in patients with chronic hepatitis C virus infection.  Hepatology. 1997;  25 (3) 697-701
  • 131 Yuki N, Hayashi N, Moribe T et al.. Relation of disease activity during chronic hepatitis C infection to complexity of hypervariable region 1 quasispecies.  Hepatology. 1997;  25 (2) 439-444
  • 132 Naito M, Hayashi N, Moribe T et al.. Hepatitis C viral quasispecies in hepatitis C virus carriers with normal liver enzymes and patients with type C chronic liver disease.  Hepatology. 1995;  22 (2) 407-412
  • 133 López-Labrador F X, Ampurdanès S, Giménez-Barcons M et al.. Relationship of the genomic complexity of hepatitis C virus with liver disease severity and response to interferon in patients with chronic HCV genotype 1b infection [correction of interferon].  Hepatology. 1999;  29 (3) 897-903
  • 134 Leone F, Zylberberg H, Squadrito G et al.. Hepatitis C virus (HCV) hypervariable region 1 complexity does not correlate with severity of liver disease, HCV type, viral load or duration of infection.  J Hepatol. 1998;  29 (5) 689-694
  • 135 Rothman A L, Morishima C, Bonkovsky H L HALT-C Trial Group et al. Associations among clinical, immunological, and viral quasispecies measurements in advanced chronic hepatitis C.  Hepatology. 2005;  41 (3) 617-625
  • 136 Sullivan D G, Bruden D, Deubner H et al.. Hepatitis C virus dynamics during natural infection are associated with long-term histological outcome of chronic hepatitis C disease.  J Infect Dis. 2007;  196 (2) 239-248
  • 137 Izopet J, Rostaing L, Sandres K et al.. Longitudinal analysis of hepatitis C virus replication and liver fibrosis progression in renal transplant recipients.  J Infect Dis. 2000;  181 (3) 852-858
  • 138 Qin H, Shire N J, Keenan E D Multicenter Hemophilia Cohort Study Group et al. HCV quasispecies evolution: association with progression to end-stage liver disease in hemophiliacs infected with HCV or HCV/HIV.  Blood. 2005;  105 (2) 533-541
  • 139 Tagariello G, Gerotto M, Pontisso P et al.. Hepatitis C virus quasispecies in the natural course of HCV-related disease in patients with haemophilia.  Haemophilia. 2004;  10 (1) 81-86
  • 140 Wang X H, Netski D M, Astemborski J et al.. Progression of fibrosis during chronic hepatitis C is associated with rapid virus evolution.  J Virol. 2007;  81 (12) 6513-6522
  • 141 Ramírez S, Pérez-Del-Pulgar S, Forns X. Virology and pathogenesis of hepatitis C virus recurrence.  Liver Transpl. 2008;  14 (Suppl 2) S27-S35
  • 142 Feliu A, Gay E, García-Retortillo M, Saiz J C, Forns X. Evolution of hepatitis C virus quasispecies immediately following liver transplantation.  Liver Transpl. 2004;  10 (9) 1131-1139
  • 143 Gretch D R, Polyak S J, Wilson J J, Carithers Jr R L, Perkins J D, Corey L. Tracking hepatitis C virus quasispecies major and minor variants in symptomatic and asymptomatic liver transplant recipients.  J Virol. 1996;  70 (11) 7622-7631
  • 144 Sullivan D G, Wilson J J, Carithers Jr R L, Perkins J D, Gretch D R. Multigene tracking of hepatitis C virus quasispecies after liver transplantation: correlation of genetic diversification in the envelope region with asymptomatic or mild disease patterns.  J Virol. 1998;  72 (12) 10036-10043
  • 145 Sánchez-Fueyo A, Giménez-Barcons M, Puig-Basagoiti F et al.. Influence of the dynamics of the hypervariable region 1 of hepatitis C virus (HCV) on the histological severity of HCV recurrence after liver transplantation.  J Med Virol. 2001;  65 (2) 266-275
  • 146 Lyra A C, Fan X, Lang D M et al.. Evolution of hepatitis C viral quasispecies after liver transplantation.  Gastroenterology. 2002;  123 (5) 1485-1493
  • 147 Arenas J I, Gallegos-Orozco J F, Laskus T et al.. Hepatitis C virus quasi-species dynamics predict progression of fibrosis after liver transplantation.  J Infect Dis. 2004;  189 (11) 2037-2046
  • 148 Li H, Sullivan D G, Feuerborn N et al.. Genetic diversity of hepatitis C virus predicts recurrent disease after liver transplantation.  Virology. 2010;  402 (2) 248-255
  • 149 Lerat H, Berby F, Trabaud M A et al.. Specific detection of hepatitis C virus minus strand RNA in hematopoietic cells.  J Clin Invest. 1996;  97 (3) 845-851
  • 150 Radkowski M, Wang L F, Vargas H E, Rakela J, Laskus T. Detection of hepatitis C virus replication in peripheral blood mononuclear cells after orthotopic liver transplantation.  Transplantation. 1998;  66 (5) 664-666
  • 151 Laskus T, Radkowski M, Piasek A et al.. Hepatitis C virus in lymphoid cells of patients coinfected with human immunodeficiency virus type 1: evidence of active replication in monocytes/macrophages and lymphocytes.  J Infect Dis. 2000;  181 (2) 442-448
  • 152 Radkowski M, Wilkinson J, Nowicki M et al.. Search for hepatitis C virus negative-strand RNA sequences and analysis of viral sequences in the central nervous system: evidence of replication.  J Virol. 2002;  76 (2) 600-608
  • 153 Laskus T, Radkowski M, Wilkinson J, Vargas H, Rakela J. The origin of hepatitis C virus reinfecting transplanted livers: serum-derived versus peripheral blood mononuclear cell-derived virus.  J Infect Dis. 2002;  185 (4) 417-421
  • 154 Ducoulombier D, Roque-Afonso A M, Di Liberto G et al.. Frequent compartmentalization of hepatitis C virus variants in circulating B cells and monocytes.  Hepatology. 2004;  39 (3) 817-825
  • 155 Roque-Afonso A M, Ducoulombier D, Di Liberto G et al.. Compartmentalization of hepatitis C virus genotypes between plasma and peripheral blood mononuclear cells.  J Virol. 2005;  79 (10) 6349-6357
  • 156 Bagaglio S, Cinque P, Racca S et al.. Hepatitis C virus populations in the plasma, peripheral blood mononuclear cells and cerebrospinal fluid of HIV/hepatitis C virus-co-infected patients.  AIDS. 2005;  19 (Suppl 3) S151-S165
  • 157 Pal S, Sullivan D G, Kim S et al.. Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism.  Gastroenterology. 2006;  130 (4) 1107-1116
  • 158 Blackard J T, Hiasa Y, Smeaton L et al.. Compartmentalization of hepatitis C virus (HCV) during HCV/HIV coinfection.  J Infect Dis. 2007;  195 (12) 1765-1773
  • 159 McGuinness P H, Bishop G A, McCaughan G W, Trowbridge R, Gowans E J. False detection of negative-strand hepatitis C virus RNA.  Lancet. 1994;  343 (8896) 551-552
  • 160 Lanford R E, Chavez D, Chisari F V, Sureau C. Lack of detection of negative-strand hepatitis C virus RNA in peripheral blood mononuclear cells and other extrahepatic tissues by the highly strand-specific rTth reverse transcriptase PCR.  J Virol. 1995;  69 (12) 8079-8083
  • 161 Laskus T, Radkowski M, Wang L F, Cianciara J, Vargas H, Rakela J. Hepatitis C virus negative strand RNA is not detected in peripheral blood mononuclear cells and viral sequences are identical to those in serum: a case against extrahepatic replication.  J Gen Virol. 1997;  78 (Pt 11) 2747-2750
  • 162 Quadri R, Rubbia-Brandt L, Abid K, Negro F. Detection of the negative-strand hepatitis C virus RNA in tissues: implications for pathogenesis.  Antiviral Res. 2001;  52 (2) 161-171
  • 163 Madejón A, Manzano M L, Arocena C, Castillo I, Carreño V. Effects of delayed freezing of liver biopsies on the detection of hepatitis C virus RNA strands.  J Hepatol. 2000;  32 (6) 1019-1025
  • 164 Natarajan V, Kottilil S, Hazen A et al.. HCV in peripheral blood mononuclear cells are predominantly carried on the surface of cells in HIV/HCV co-infected individuals.  J Med Virol. 2010;  82 (12) 2032-2037
  • 165 Pham T N, King D, Macparland S A et al.. Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis C and occult infection.  Gastroenterology. 2008;  134 (3) 812-822
  • 166 Fujii K, Hino K, Okazaki M, Okuda M, Kondoh S, Okita K. Differences in hypervariable region 1 quasispecies of hepatitis C virus between human serum and peripheral blood mononuclear cells.  Biochem Biophys Res Commun. 1996;  225 (3) 771-776
  • 167 Cabot B, Esteban J I, Martell M et al.. Structure of replicating hepatitis C virus (HCV) quasispecies in the liver may not be reflected by analysis of circulating HCV virions.  J Virol. 1997;  71 (2) 1732-1734
  • 168 Shimizu Y K, Igarashi H, Kanematu T et al.. Sequence analysis of the hepatitis C virus genome recovered from serum, liver, and peripheral blood mononuclear cells of infected chimpanzees.  J Virol. 1997;  71 (8) 5769-5773
  • 169 Maggi F, Fornai C, Vatteroni M L et al.. Differences in hepatitis C virus quasispecies composition between liver, peripheral blood mononuclear cells and plasma.  J Gen Virol. 1997;  78 (Pt 7) 1521-1525
  • 170 Navas S, Martín J, Quiroga J A, Castillo I, Carreño V. Genetic diversity and tissue compartmentalization of the hepatitis C virus genome in blood mononuclear cells, liver, and serum from chronic hepatitis C patients.  J Virol. 1998;  72 (2) 1640-1646
  • 171 Maggi F, Fornai C, Morrica A et al.. Divergent evolution of hepatitis C virus in liver and peripheral blood mononuclear cells of infected patients.  J Med Virol. 1999;  57 (1) 57-63
  • 172 Okuda M, Hino K, Korenaga M, Yamaguchi Y, Katoh Y, Okita K. Differences in hypervariable region 1 quasispecies of hepatitis C virus in human serum, peripheral blood mononuclear cells, and liver.  Hepatology. 1999;  29 (1) 217-222
  • 173 Fishman S L, Murray J M, Eng F J, Walewski J L, Morgello S, Branch A D. Molecular and bioinformatic evidence of hepatitis C virus evolution in brain.  J Infect Dis. 2008;  197 (4) 597-607
  • 174 Waddle D M. Matrix correlation tests support a single origin for modern humans.  Nature. 1994;  368 (6470) 452-454
  • 175 Laskus T, Radkowski M, Bednarska A et al.. Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid.  J Virol. 2002;  76 (19) 10064-10068
  • 176 Forton D M, Karayiannis P, Mahmud N, Taylor-Robinson S D, Thomas H C. Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants.  J Virol. 2004;  78 (10) 5170-5183
  • 177 Lerat H, Shimizu Y K, Lemon S M. Cell type-specific enhancement of hepatitis C virus internal ribosome entry site-directed translation due to 5′ nontranslated region substitutions selected during passage of virus in lymphoblastoid cells.  J Virol. 2000;  74 (15) 7024-7031
  • 178 Laporte J, Malet I, Andrieu T et al.. Comparative analysis of translation efficiencies of hepatitis C virus 5′ untranslated regions among intraindividual quasispecies present in chronic infection: opposite behaviors depending on cell type.  J Virol. 2000;  74 (22) 10827-10833
  • 179 Laporte J, Bain C, Maurel P, Inchauspe G, Agut H, Cahour A. Differential distribution and internal translation efficiency of hepatitis C virus quasispecies present in dendritic and liver cells.  Blood. 2003;  101 (1) 52-57
  • 180 Di Liberto G, Roque-Afonso A M, Kara R et al.. Clinical and therapeutic implications of hepatitis C virus compartmentalization.  Gastroenterology. 2006;  131 (1) 76-84
  • 181 Ramirez S, Perez-Del-Pulgar S, Carrion J A et al.. Hepatitis C virus compartmentalization and infection recurrence after liver transplantation.  Am J Transplant. 2009;  9 (7) 1591-1601
  • 182 Kurosaki M, Enomoto N, Sakamoto N et al.. Detection and analysis of replicating hepatitis C virus RNA in hepatocellular carcinoma tissues.  J Hepatol. 1995;  22 (5) 527-535
  • 183 De Mitri M S, Mele L, Chen C H et al.. Comparison of serum and liver hepatitis C virus quasispecies in HCV-related hepatocellular carcinoma.  J Hepatol. 1998;  29 (6) 887-892
  • 184 De Mitri M S, Cassini R, Bagaglio S et al.. Evolution of hepatitis C virus non-structural 5A gene in the progression of liver disease to hepatocellular carcinoma.  Liver Int. 2007;  27 (8) 1126-1133
  • 185 Sobesky R, Feray C, Rimlinger F et al.. Distinct hepatitis C virus core and F protein quasispecies in tumoral and nontumoral hepatocytes isolated via microdissection.  Hepatology. 2007;  46 (6) 1704-1712
  • 186 Afdhal N H, McHutchison J G, Zeuzem S Pharmacogenetics and Hepatitis C Meeting Participants et al. Hepatitis C pharmacogenetics: state of the art in 2010.  Hepatology. 2011;  53 (1) 336-345
  • 187 Ge D, Fellay J, Thompson A J et al.. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance.  Nature. 2009;  461 (7262) 399-401
  • 188 Tanaka Y, Nishida N, Sugiyama M et al.. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C.  Nat Genet. 2009;  41 (10) 1105-1109
  • 189 Suppiah V, Moldovan M, Ahlenstiel G et al.. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy.  Nat Genet. 2009;  41 (10) 1100-1104
  • 190 Thomas D L, Thio C L, Martin M P et al.. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus.  Nature. 2009;  461 (7265) 798-801
  • 191 Wohnsland A, Hofmann W P, Sarrazin C. Viral determinants of resistance to treatment in patients with hepatitis C.  Clin Microbiol Rev. 2007;  20 (1) 23-38
  • 192 Okada S, Akahane Y, Suzuki H, Okamoto H, Mishiro S. The degree of variability in the amino terminal region of the E2/NS1 protein of hepatitis C virus correlates with responsiveness to interferon therapy in viremic patients.  Hepatology. 1992;  16 (3) 619-624
  • 193 Kanazawa Y, Hayashi N, Mita E et al.. Influence of viral quasispecies on effectiveness of interferon therapy in chronic hepatitis C patients.  Hepatology. 1994;  20 (5) 1121-1130
  • 194 Moribe T, Hayashi N, Kanazawa Y et al.. Hepatitis C viral complexity detected by single-strand conformation polymorphism and response to interferon therapy.  Gastroenterology. 1995;  108 (3) 789-795
  • 195 Nagasaka A, Hige S, Tsunematsu I et al.. Changes in hepatitis C virus quasispecies and density populations in patients before and after interferon therapy.  J Med Virol. 1996;  50 (3) 214-220
  • 196 Polyak S J, Faulkner G, Carithers Jr R L, Corey L, Gretch D R. Assessment of hepatitis C virus quasispecies heterogeneity by gel shift analysis: correlation with response to interferon therapy.  J Infect Dis. 1997;  175 (5) 1101-1107
  • 197 Le Guen B, Squadrito G, Nalpas B et al.. Hepatitis C virus genome complexity correlates with response to interferon therapy: a study in French patients with chronic hepatitis C.  Hepatology. 1997;  25 (5) 1250-1254
  • 198 Pawlotsky J M, Pellerin M, Bouvier M et al.. Genetic complexity of the hypervariable region 1 (HVR1) of hepatitis C virus (HCV): influence on the characteristics of the infection and responses to interferon alfa therapy in patients with chronic hepatitis C.  J Med Virol. 1998;  54 (4) 256-264
  • 199 Hino K, Yamaguchi Y, Fujiwara D et al.. Hepatitis C virus quasispecies and response to interferon therapy in patients with chronic hepatitis C: a prospective study.  J Viral Hepat. 2000;  7 (1) 36-42
  • 200 Chambers T J, Fan X, Droll D A et al.. Quasispecies heterogeneity within the E1/E2 region as a pretreatment variable during pegylated interferon therapy of chronic hepatitis C virus infection.  J Virol. 2005;  79 (5) 3071-3083
  • 201 Morishima C, Polyak S J, Ray R Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis Trial Group et al. Hepatitis C virus-specific immune responses and quasi-species variability at baseline are associated with nonresponse to antiviral therapy during advanced hepatitis C.  J Infect Dis. 2006;  193 (7) 931-940
  • 202 Torres-Puente M, Cuevas J M, Jiménez-Hernández N et al.. Genetic variability in hepatitis C virus and its role in antiviral treatment response.  J Viral Hepat. 2008;  15 (3) 188-199
  • 203 Moreau I, Levis J, Crosbie O, Kenny-Walsh E, Fanning L J. Correlation between pre-treatment quasispecies complexity and treatment outcome in chronic HCV genotype 3a.  Virol J. 2008;  5 78
  • 204 Saludes V, Bracho M A, Valero O et al.. Baseline prediction of combination therapy outcome in hepatitis C virus 1b infected patients by discriminant analysis using viral and host factors.  PLoS ONE. 2010;  5 (11) e14132
  • 205 Nakazawa T, Kato N, Ohkoshi S, Shibuya A, Shimotohno K. Characterization of the 5′ noncoding and structural region of the hepatitis C virus genome from patients with non-A, non-B hepatitis responding differently to interferon treatment.  J Hepatol. 1994;  20 (5) 623-629
  • 206 López-Labrador F X, Ampurdanès S, Giménez-Barcons M et al.. Relationship of the genomic complexity of hepatitis C virus with liver disease severity and response to interferon in patients with chronic HCV genotype 1b infection [correction of interferon].  Hepatology. 1999;  29 (3) 897-903
  • 207 Sandres K, Dubois M, Pasquier C et al.. Genetic heterogeneity of hypervariable region 1 of the hepatitis C virus (HCV) genome and sensitivity of HCV to alpha interferon therapy.  J Virol. 2000;  74 (2) 661-668
  • 208 Fan X, Mao Q, Zhou D et al.. High diversity of hepatitis C viral quasispecies is associated with early virological response in patients undergoing antiviral therapy.  Hepatology. 2009;  50 (6) 1765-1772
  • 209 Polyak S J, McArdle S, Liu S L et al.. Evolution of hepatitis C virus quasispecies in hypervariable region 1 and the putative interferon sensitivity-determining region during interferon therapy and natural infection.  J Virol. 1998;  72 (5) 4288-4296
  • 210 Pawlotsky J M, Germanidis G, Frainais P O et al.. Evolution of the hepatitis C virus second envelope protein hypervariable region in chronically infected patients receiving alpha interferon therapy.  J Virol. 1999;  73 (8) 6490-6499
  • 211 Abbate I, Lo Iacono O, Di Stefano R et al.. HVR-1 quasispecies modifications occur early and are correlated to initial but not sustained response in HCV-infected patients treated with pegylated- or standard-interferon and ribavirin.  J Hepatol. 2004;  40 (5) 831-836
  • 212 Sherman K E, Rouster S D, Stanford S AIDS Clinical Trials Group 5071 Study Team et al. Hepatitis C virus (HCV) quasispecies complexity and selection in HCV/HIV-coinfected subjects treated with interferon-based regimens.  J Infect Dis. 2010;  201 (5) 712-719
  • 213 Thelu M A, Baud M, Leroy V, Seigneurin J M, Zarski J P. Dynamics of viral quasispecies during interferon therapy in non responder chronic hepatitis C patients.  J Clin Virol. 2001;  22 (1) 125-131
  • 214 Enomoto N, Sakuma I, Asahina Y et al.. Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region.  J Clin Invest. 1995;  96 (1) 224-230
  • 215 Enomoto N, Sakuma I, Asahina Y et al.. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection.  N Engl J Med. 1996;  334 (2) 77-81
  • 216 Sáiz J C, López-Labrador F X, Ampurdanés S et al.. The prognostic relevance of the nonstructural 5A gene interferon sensitivity determining region is different in infections with genotype 1b and 3a isolates of hepatitis C virus.  J Infect Dis. 1998;  177 (4) 839-847
  • 217 Puig-Basagoiti F, Sáiz J C, Forns X et al.. Influence of the genetic heterogeneity of the ISDR and PePHD regions of hepatitis C virus on the response to interferon therapy in chronic hepatitis C.  J Med Virol. 2001;  65 (1) 35-44
  • 218 Hayashi K, Katano Y, Honda T et al.. Mutations in the interferon sensitivity-determining region of hepatitis C virus genotype 2a correlate with response to pegylated-interferon-alpha 2a monotherapy.  J Med Virol. 2009;  81 (3) 459-466
  • 219 Khorsi H, Castelain S, Wyseur A et al.. Mutations of hepatitis C virus 1b NS5A 2209-2248 amino acid sequence do not predict the response to recombinant interferon-alfa therapy in French patients.  J Hepatol. 1997;  27 (1) 72-77
  • 220 Squadrito G, Leone F, Sartori M et al.. Mutations in the nonstructural 5A region of hepatitis C virus and response of chronic hepatitis C to interferon alfa.  Gastroenterology. 1997;  113 (2) 567-572
  • 221 Jardim A C, Yamasaki L H, de Queiróz A T et al.. Quasispecies of hepatitis C virus genotype 1 and treatment outcome with peginterferon and ribavirin.  Infect Genet Evol. 2009;  9 (4) 689-698
  • 222 Halfon P, Locarnini S. Hepatitis C virus resistance to protease inhibitors.  J Hepatol. 2011;  55 (1) 192-206
  • 223 Wainberg M A, Zaharatos G J, Brenner B G. Development of antiretroviral drug resistance.  N Engl J Med. 2011;  365 (7) 637-646
  • 224 Sarrazin C, Kieffer T L, Bartels D et al.. Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir.  Gastroenterology. 2007;  132 (5) 1767-1777
  • 225 Bartels D J, Zhou Y, Zhang E Z et al.. Natural prevalence of hepatitis C virus variants with decreased sensitivity to NS3.4A protease inhibitors in treatment-naive subjects.  J Infect Dis. 2008;  198 (6) 800-807
  • 226 Kuntzen T, Timm J, Berical A et al.. Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naïve patients.  Hepatology. 2008;  48 (6) 1769-1778
  • 227 Cubero M, Esteban J I, Otero T et al.. Naturally occurring NS3-protease-inhibitor resistant mutant A156T in the liver of an untreated chronic hepatitis C patient.  Virology. 2008;  370 (2) 237-245
  • 228 Kim A Y, Timm J, Nolan B E et al.. Temporal dynamics of a predominant protease inhibitor-resistance mutation in a treatment-naive, hepatitis C virus-infected individual.  J Infect Dis. 2009;  199 (5) 737-741
  • 229 Nijhuis M, van Maarseveen N M, Boucher C A. Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases.  Handb Exp Pharmacol. 2009;  189 (189) 299-320
  • 230 Shimakami T, Welsch C, Yamane D et al.. Protease inhibitor-resistant hepatitis C virus mutants with reduced fitness from impaired production of infectious virus.  Gastroenterology. 2011;  140 (2) 667-675

Patrizia Farci

National Institutes of Health, 50 South Drive, MSC 8009

Building 50, Room 6529, Bethesda, MD 20892

Email: pfarci@niaid.nih.gov

    >