Kardiologie up2date 2012; 08(03): 233-252
DOI: 10.1055/s-0032-1310277
Diagnostische Verfahren und Bildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Nicht invasive kardiologische Bildgebung bei Herzinsuffizienz

Henning Steen
,
Florian André
Further Information

Publication History

Publication Date:
09 October 2012 (online)

Abstract

Heart failure is the fastest growing cardiac diagnosis in Europe with an incidence of 10 cases per 1000 people in individuals older than 65. The vital role of cardiac imaging in the management of patients with heart failure continues to grow. As many novel imaging markers emerge, it becomes difficult for clinicians to choose the imaging tests that can best aid clinical decisions for a given patient. Echocardiography remains a first-line test in heart failure and continues to provide valuable information on left ventricular and valvular function. Single-photon emission computed tomography (SPECT) is routinely used to detect ischemia. However, there is increasing evidence to support the use of other imaging modalities, cardiovascular magnetic resonance (CMR), positron emission tomography (PET) and computed tomography (CT), to assist heart failure physicians with clinical decision making. In this review, we summarize the most recent developments relevant to heart failure.

Kernaussagen
  • Die Herzinsuffizienz zeigt in den westlichen Industrienationen eine stark zunehmende Prävalenz und eine Inzidenz von annähernd 10 Patienten pro 1000 Individuen, die älter als 65 Lebensjahre sind.

  • Die Therapie der HIS ist zunehmend komplexer und bedarf der genauen Indikationsstellung und des exakten Monitorings. Dieses Monitoring gelingt zunehmend mit sog. Biomarkern, also charakteristisch und objektiv messbaren Indikatoren biologischer und pathologischer Prozesse. Hier erfüllt neben den serologischen Biomarkern wie z. B. ANP, BNP oder NT-pro BNP die moderne Bildgebung eine wichtige Rolle, in dem sie eine große Anzahl neuer morphologischer und funktioneller Marker bietet, die mittels verschiedener Bildgebungsverfahren dargestellt und gemessen werden können.

  • Im Rahmen der klinischen HIS haben sich hierbei im Wesentlichen die Echokardiografie und das Kardio-MRT als sinnvoll erwiesen, wobei beide Verfahren aufgrund ihrer unterschiedlichen Vor- und Nachteile durchaus als komplementär anzusehen sind. Die höhere zeitliche Auflösung der Echokardiografie machen diese Technik besonders wertvoll in der Bestimmung der diastolischen Funktionsstörung, während die höhere räumliche Auflösung und die Möglichkeit der Anwendung unterschiedlicher MRT-Sequenzen (T1-, T2-Wichtung, Mapping, LGE) das Kardio-MRT besonders für die Beurteilung der systolischen Funktion, der Morphologie und der Gewebecharakterisierung empfehlen. Obwohl die Kardio-MRT nur begrenzt zugänglich und kosten- und personalintensiv ist, kompliziert in der Anwendung erscheint und Kontraindikationen wie Herzschrittmacher und Defibrillatoren bedacht werden müssen, ist sie doch eine wertvolle Alternative und Ergänzung zur Echokardiografie.

 
  • Literatur

  • 1 Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol 2004; 43: 317-327
  • 2 Senni M, Redfield MM. Heart failure with preserved systolic function. A different natural history?. J Am Coll Cardiol 2001; 38: 1277-1282
  • 3 Gandhi SK, Powers JC, Nomeir AM et al. The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med 2001; 344: 17-22
  • 4 Cleland JG, Swedberg K, Follath F et al. The EuroHeart Failure survey programme – a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis. Eur Heart J 2003; 24: 442-463
  • 5 Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart 2007; 93: 1137-1146
  • 6 McMurray JJ. Clinical practice. Systolic heart failure. N Engl J Med 2010; 362: 228-238
  • 7 Haider AW, Larson MG, Benjamin EJ et al. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 1998; 32: 1454-1459
  • 8 Mor-Avi V, Sugeng L, Weinert L et al. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation 2004; 110: 1814-1818
  • 9 Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977; 55: 613-618
  • 10 Steen H, Nasir K, Flynn E et al. Is magnetic resonance imaging the ‘reference standard’ for cardiac functional assessment? Factors influencing measurement of left ventricular mass and volumes.. Clin Res Cardiol 2007; 96: 743-751
  • 11 Lang RM, Bierig M, Devereux RB et al. Recommendations for chamber quantification. Eur J Echocardiogr 2006; 7: 79-108
  • 12 Sugeng L, Mor-Avi V, Weinert L et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006; 114: 654-661
  • 13 Tighe DA, Rosetti M, Vinch CS et al. Influence of image quality on the accuracy of real time three-dimensional echocardiography to measure left ventricular volumes in unselected patients: a comparison with gated-SPECT imaging. Echocardiography 2007; 24: 1073-1080
  • 14 Jenkins C, Moir S, Chan J et al. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J 2009; 30: 98-106
  • 15 Ruan Q, Nagueh SF. Usefulness of isovolumic and systolic ejection signals by tissue Doppler for the assessment of left ventricular systolic function in ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2006; 97: 872-875
  • 16 Gjesdal O, Hopp E, Vartdal T et al. Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci (Lond) 2007; 113: 287-296
  • 17 Zerhouni EA, Parish DM, Rogers WJ et al. Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion. Radiology 1988; 169: 59-63
  • 18 Osman NF. Detecting stiff masses using strain-encoded (SENC) imaging. Magn Reson Med 2003; 49: 605-608
  • 19 Hennig J, Schneider B, Peschl S et al. Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient-echo sequence: methodology and applications to normal volunteers and patients. J Magn Reson Imaging 1998; 8: 868-877
  • 20 Bess RL, Khan S, Rosman HS et al. Technical aspects of diastology: why mitral inflow and tissue Doppler imaging are the preferred parameters?. Echocardiography 2006; 23: 332-339
  • 21 Nagueh SF, Appleton CP, Gillebert TC et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22: 107-133
  • 22 Leong DP, De Pasquale CG, Selvanayagam JB. Heart failure with normal ejection fraction: the complementary roles of echocardiography and CMR imaging. JACC Cardiovasc Imaging 2010; 3: 409-420
  • 23 Hillis GS, Moller JE, Pellikka PA et al. Noninvasive estimation of left ventricular filling pressure by E/e' is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol 2004; 43: 360-367
  • 24 Rubinshtein R, Glockner JF, Feng D et al. Comparison of magnetic resonance imaging versus Doppler echocardiography for the evaluation of left ventricular diastolic function in patients with cardiac amyloidosis. Am J Cardiol 2009; 103: 718-723
  • 25 Petersen SE, Jung BA, Wiesmann F et al. Myocardial tissue phase mapping with cine phase-contrast mr imaging: regional wall motion analysis in healthy volunteers. Radiology 2006; 238: 816-826
  • 26 Nagel E, Stuber M, Burkhard B et al. Cardiac rotation and relaxation in patients with aortic valve stenosis. Eur Heart J 2000; 21: 582-589
  • 27 Edvardsen T, Rosen BD, Pan L et al. Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging – the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J 2006; 151: 109-114
  • 28 Korosoglou G, Youssef AA, Bilchick KC et al. Real-time fast strain-encoded magnetic resonance imaging to evaluate regional myocardial function at 3.0 Tesla: comparison to conventional tagging. J Magn Reson Imaging 2008; 27: 1012-1018
  • 29 Neizel M, Lossnitzer D, Korosoglou G et al. Strain-encoded MRI for evaluation of left ventricular function and transmurality in acute myocardial infarction. Circ Cardiovasc Imaging 2009; 2: 116-122
  • 30 McCrohon JA, Moon JC, Prasad SK et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003; 108: 54-59
  • 31 Choudhury L, Mahrholdt H, Wagner A et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002; 40: 2156-2164
  • 32 Moon JC, Sachdev B, Elkington AG et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003; 24: 2151-2155
  • 33 Maceira AM, Joshi J, Prasad SK et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186-193
  • 34 Anderson LJ, Holden S, Davis B et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22: 2171-2179
  • 35 Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000; 343: 1445-1453
  • 36 Candell-Riera J et al. Prognostic value of myocardial perfusion-gated SPECT in patients with ischemic cardiomyopathy. J Nucl Cardiol 2009; 16: 212-221
  • 37 Yu M et al. The next generation of cardiac positron emission tomography imaging agents: discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med 2011; 41: 305-313
  • 38 Beanlands RS et al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease – executive summary. Can J Cardiol 2007; 23: 107-119
  • 39 Schinkel AF et al. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007; 32 (07) 375-410
  • 40 Maffei E et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data and review of multicentre trials. Radiol Med 2010; 115: 368-384
  • 41 Ghostine S et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. Eur Heart J 2008; 29 (17) 2133-2140