Rofo 2012; 184(8): 697-705
DOI: 10.1055/s-0032-1312891
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Der dicke linke Ventrikel: Ursachen und Differenzialdiagnose der linksventrikulären Hypertrophie und Implikationen für die kardiovaskuläre Radiologie

The Thickened Left Ventricle: Etiology, Differential Diagnosis and Implications for Cardiovascular Radiology
P. Bischoff
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
,
P. W. Radke
2   Medizinische Klinik II, Uniklinikum Schleswig-Holstein
,
J. Barkhausen
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
,
P. Hunold
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
› Author Affiliations
Further Information

Publication History

25 October 2011

03 May 2012

Publication Date:
18 June 2012 (online)

Zusammenfassung

Verdickte linke Ventrikelwände sind ein häufiger Befund, der echokardiografisch, computertomografisch und kernspintomografisch zuverlässig nachgewiesen werden kann. Zu den häufigen Ursachen zählen alle Erkrankungen, die mit einer Nachlasterhöhung einhergehen, sowie primäre und sekundäre Kardiomyopathien. Durch die Möglichkeit, sowohl funktionelle Parameter des linken Ventrikels als auch die myokardiale Masse exakt zu bestimmen und gleichzeitig strukturelle Veränderungen des Herzmuskels nachzuweisen, ist die kardiale MRT die beste bildgebende Methode zur Quantifizierung der linksventrikulären Hypertrophie, zur Abklärung der Ursache und zur Charakterisierung der myokardialen Veränderungen. Bei der kardialen MRT ist hierzu jedoch ein flexibles, an die individuellen Befunde angepasstes Untersuchungsprotokoll erforderlich. In dieser Übersichtsarbeit werden die unterschiedlichen zugrunde liegenden Erkrankungen ausführlich beschrieben und sinnvolle diagnostische Algorithmen bei Patienten mit linksventrikulärer Hypertrophie vorgestellt.

Abstract

Hypertrophy of the left ventricular myocardium is a common finding and can be reliably detected by echocardiography, CT and MRI. Common causes include diseases associated with increased cardiac afterload as well as primary and secondary cardiomyopathy. With the opportunity to determine functional parameters and myocardial mass precisely as well as to detect structural changes of the cardiac muscle simultaneously, cardiac MRI is the most precise imaging method for quantifying left ventricular hypertrophy as well as determining the cause and the exact characterization of the myocardial changes. It is mandatory, however, to create a flexible, individually adapted examination protocol. This review presents useful diagnostic algorithms in relation to different underlying pathologies in patients with left ventricular hypertrophy.

 
  • Literatur

  • 1 Bottini PB, Carr AA, Prisant LM et al. Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 1995; 8: 221-228
  • 2 Semelka RC, Tomei E, Wagner S et al. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 1990; 119: 1367-1373
  • 3 Hunold P, Vogt FM, Heemann UW et al. Myocardial mass and volume measurement of hypertrophic left ventricles by MRI-study in dialysis patients examined before and after dialysis. J Cardiovasc Magn Reson 2003; 5: 553-561
  • 4 Levy D, Garrison R, Savage D et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561-1566
  • 5 Böcker W, Denk H, Heitz PU. Pathologie. München: Urban & Fischer; 2004: 442-443
  • 6 Bove KE, Rowlands DT, Scott RC. Observations on the assessment of cardiac hypertrophy utilizing a chamber partition technique. Circulation 1966; 33: 558-568
  • 7 Hudsmith LE, Petersen SE, Francis JM et al. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 2005; 7: 775-782
  • 8 Aurigemma GP, Silver KH, Priest MA et al. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol 1995; 26: 195-202
  • 9 Devereux RB, Alderman MH. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation 1993; 88: 1444-1455
  • 10 Koren MJ, Devereux RB, Casale PN et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345-352
  • 11 Bolte HD, Autenrieth G, Böhm M et al. Entzündliche Herzerkrankungen und Kardiomyopathien. In: Erdmann E, Riecker G, (eds) Klinische Kardiologie: Krankheiten des Herzens, des Kreislaufs und der Gefäße. Berlin; Heidelberg: Springer; 1996: 279-285
  • 12 Katus HA, Vosberg HP. Die Herzinsuffizienz als genetische Krankheit: Beispiel Kardiomyopathie. Internist 1993; 34: 902-911
  • 13 Bolte HD, Autenrieth G, Böhm M et al. Entzündliche Herzerkrankungen und Kardiomyopathien. In: Erdmann E, Riecker G, (eds) Klinische Kardiologie: Krankheiten des Herzens, des Kreislaufs und der Gefäße. Berlin; Heidelberg: Springer; 1996: 256-258
  • 14 Hergan K, Schuster A, Mair M et al. Normalwerte der Herzdurchmesser in der Cine-MRT. Fortschr Röntgenstr 2004; 176: 1599-606
  • 15 Pennell DJ. Ventricular volume and mass by CMR. J Cardiovasc Magn Reson 2002; 4: 507-513
  • 16 DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Int Med 1916; 17: 863-871
  • 17 Prisant LM. Hypertensive heart disease. J Clin Hypertens 2005; 7: 231-238
  • 18 Nkomo VT, Gardin JM, Skelton TN et al. Burden of valvular heart diseases: a population-based study. Lancet 2006; 368: 1005-1011
  • 19 Roberts WC. Valvular, subvalvular and supravalvular aortic stenosis. Morphologic features. Cardiovasc Clin 1973; 5: 97
  • 20 Dahl J, Flachskampf FA, Hoffmann R et al. Erworbene Herzklappenfehler. In: Erdmann E, Riecker G, (eds) Klinische Kardiologie: Krankheiten des Herzens, des Kreislaufs und der Gefäße. Berlin; Heidelberg: Springer; 1996: 376-385
  • 21 Roberts WC. The congenitally bicuspid aortic valve. A study of 85 autopsy causes. Am J Cardiol 1970; 26: 72
  • 22 McMillan IKR. Aortic stenosis: A postmortem cinephotographic study of valve action. Br Heart J 1955; 17: 56
  • 23 Schlosser T, Malyar N, Jochims M et al. Quantification of aortic valve stenosis in MRI-comparison of steady-state free precession and fast low-angle shot sequences. Eur Radiol 2007; 17: 1284-1290
  • 24 Bonow RO, Carabello BA, Kanu C American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Society of Cardiovascular Anesthesiologists; Society for Cardiovascular Angiography and Interventions; Society of Thoracic Surgeons, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 2006; 114: e84-e231
  • 25 Lewin MB, Otto CM. The bicuspid aortic valve: adverse outcomes from infancy to old age. Circulation 2005; 111: 832-834
  • 26 Otto CM. Valvular aortic stenosis: disease severity and timing of intervention. J Am Coll Cardiol 2006; 47: 2141-2151
  • 27 Antonini-Canterin F, Huang G, Cervesato E et al. Symptomatic aortic stenosis: does systemic hypertension play an additional role?. Hypertension 2003; 41: 1268-1272
  • 28 Dahl J, Flachskampf FA, Hoffmann R et al. Erworbene Herzklappenfehler. In: Erdmann E, Riecker G, (eds) Klinische Kardiologie: Krankheiten des Herzens, des Kreislaufs und der Gefäße. Berlin; Heidelberg: Springer; 1996: 378
  • 29 Pouleur AC, le Polain de Waroux JB, Pasquet A et al. Planimetric and continuity equation assessment of aortic valve area: Head to head comparison between cardiac magnetic resonance and echocardiography. J Magn Reson Imaging 2007; 26: 1436-1443
  • 30 Williams JC, Barrat-Boyes BG, Lowe JB. Supravalvular aortic stenosis. Circulation 1961; 24: 1311-1318
  • 31 Beuren AJ, Apitz J, Harmjanz D. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 1962; 26: 1235-1240
  • 32 Brand A, Keren A, Reifen RM et al. Echocardiographic and Doppler findings in the Williams syndrome. Am J Cardiol 1989; 63: 633-635
  • 33 Wren C, Oslizlok P, Bull C. Natural history of supravalvular aortic stenosis and pulmonary artery stenosis. J Am Coll Cardiol 1990; 15: 1625-1630
  • 34 Summers RM, Andrasko-Bourgeois J, Feuerstein IM et al. Evaluation of the aortic root by MRI: insights from patients with homozygous familial hypercholesterolemia. Circulation 1998; 98: 509-518
  • 35 Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890-1900
  • 36 Sampayo F, Pinto FF. The sex distribution of congenital cardiopathies. Acta Med Port 1994; 7: 413-418
  • 37 Tawes Jr RL, Berry CL, Aberdeen E. Congenital bicuspid aortic valves associated with coarctation of the aorta in children. Br Heart J 1969; 31: 127-128
  • 38 Boxer RA, LaCorte MA, Singh S et al. Nuclear magnetic resonance imaging in evaluation and follow-up of children treated for coarctation of the aorta. J Am Coll Cardiol 1986; 7: 1095-1098
  • 39 Baker EJ, Ayton V, Smith MA et al. Magnetic resonance imaging of coarctation of the aorta in infants: use of a high field strength. Br Heart J 1989; 62: 97-101
  • 40 Miabi Z, Pourfathi H, Midia M et al. Comparison of ct angiography and digital substraction angiography in the diagnosis of aortic coarction. Pak J Biol Sci 2011; 14: 74-77
  • 41 Maron BJ, Towbin JA, Thiene G et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113: 1807-16
  • 42 Meurs KM, Mealey KL. Evaluation of the flanking nucleotide sequences of sarcomeric hypertrophic cardiomyopathy substitution mutations. Mutat Res 2008; 642: 86-89
  • 43 Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 1308-1320
  • 44 Maron BJ, McKenna WJ, Danielson GK et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. J Am Coll Cardiol 2003; 42: 1687-1713
  • 45 Spirito P, Bellone P, Harris KM et al. Magnitude of left ventricular hypertrophy predicts the risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 2000; 342: 1778-1785
  • 46 Maron BJ, Estes III NAM, Maron MS et al. Primary prevention of sudden death as a novel treatment strategy in hypertrophic cardiomyopathy. Circulation 2003; 107: 2872-2875
  • 47 Maron BJ. Sudden death in young athletes. N Engl J Med 2003; 349: 1064-1075
  • 48 Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardi ography in 600 patients. J Am Col l Cardiol 1995; 26: 1699-1708
  • 49 Maron BJ, Gottdiener JS, Bonow RO et al. Hypertrophic cardiomyopathy with unusual locations of left ventricular hypertrophy undetectable by M-mode echocardiography: identification by wide-angle, two-dimensional echocardiography. Circulation 1981; 63: 409-418
  • 50 Maron BJ, Gottdiener JS, Epstein SE. Patterns and significance of the distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a wide-angle, two-dimensional echocardiographic study of 125 patients. Am J Cardiol 1981; 48: 418-428
  • 51 Schulz-Menger J, Abdel-Aty H, Busjahn A et al. Left ventricular outflow tract planimetry by cardiovascular magnetic resonance differentiates obstructive from non-obstructive hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2006; 8: 741-746
  • 52 Henry WL, Clark CE, Griffith JM et al. Mechanism of left ventricular outflow obstruction in patients with obstructive asymmetric septal hypertrophy (idiopathic hypertrophic subaortic stenosis). Am J Cardiol 1975; 35: 337-345
  • 53 Søndergaard L, Ståhlberg F, Thomsen C. Magnetic resonance imaging of valvular heart disease. J Magn Reson Imaging 1999; 10: 627-638
  • 54 Rickers C, Wilke NM, Jerosch-Herold M et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation 2005; 112: 855-861
  • 55 Sohns C, Sossalla S, Schmitto JD et al. Visualization of transcoronary ablation of septal hypertrophy in patients with hypertrophic obstructive cardiomyopathy: a comparison between cardiac MRI, invasive measurements and echocardiography. Clin Res Cardiol 2010; 99: 359-368
  • 56 Kim RJ, Albert TS, Wible JH et al. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 2008; 117: 629-637
  • 57 Hunold P, Schlosser T, Vogt FM et al. Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. Am J Roentgenol 2005; 184: 1420-1426
  • 58 Simonetti OP, Kim RJ, Fieno DS et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001; 218: 215-223
  • 59 Kellman P, Arai AE, McVeigh ER et al. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002; 47: 372-383
  • 60 Kellman P, Larson AC, Hsu LY et al. Motion-corrected free-breathing delayed enhancement imaging of myocardial infarction. Magn Reson Med 2005; 53: 194-200
  • 61 Bogaert J, Goldstein M, Tannouri F et al. Original report. Late myocardial enhancement in hypertrophic cardiomyopathy with contrast-enhanced MR imaging. Am J Roentgenol 2003; 180: 981-985
  • 62 Moon JC, Reed E, Sheppard MN et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004; 43: 2260-2264
  • 63 Moon JC, McKenna WJ, McCrohon JA et al. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 2003; 41: 1561-1567
  • 64 Adabag AS, Maron BJ, Appelbaum E et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 2008; 51: 1369-1374
  • 65 Maron MS, Maron BJ, Harrigan C et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 2009; 54: 220-228
  • 66 Kyle RA, Greipp PR, O’Fallon WM. Primary systemic amyloidosis: multivariate analysis for prognostic factors in 168 cases. Blood 1986; 68: 220-224
  • 67 Arbustini E, Gavazzi A, Merlini G. Fibril-forming proteins: the amyloidosis: new hopes for a disease that cardiologists must know. Ital Heart J Suppl 2002; 3: 590-597
  • 68 Nihoyannopoulos P. Amyloid heart disease. Current Opin Cardiol 1987; 2: 371-376
  • 69 Laurent M, Toulet R, Ramée MP et al. Light chain disease with terminal myocardiopathy. Arch Mal Coeur Vaiss 1985; 78: 943-946
  • 70 Yazaki M, Tokuda T, Nakamura A et al. Cardiac amyloid in patients with familial amyloid polyneuropathy consists of abundant wild-type transthyretin. Biochem Biophys Res Commun 2000; 274: 702-706
  • 71 Ishikawa Y, Ishii T, Masuda S et al. Myocardial ischemia due to vascular systemic amyloidosis: a quantitative analysis of autopsy findings on stenosis of the intramural coronary arteries. Pathol Int 1996; 46: 189-194
  • 72 Maceira AM, Joshi J, Prasad SK et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186-193
  • 73 Nakao S, Takenaka T, Maeda M et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 1995; 333: 288-293
  • 74 Sachdev B, Takenaka T, Teraguchi H et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation 2002; 105: 1407-1411
  • 75 Desnick RJ, Ioannou YA, Eng CM. α-Galactosidase A eficiency: Fabry disease. In: Scriver CR, (ed) The metabolic and molecular basis of inherited disease. New York: McGraw-Hill; 2001: 3733-3774
  • 76 Teraguchi H, Takenaka T, Yoshida A et al. End-stage cardiac manifestations and autopsy findings in patients with cardiac Fabry disease. J Cardiol 2004; 43: 98-99
  • 77 Weidemann F, Niemann M, Breunig F et al. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 2009; 119: 524-529