Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47(07/08): 470-480
DOI: 10.1055/s-0032-1323568
Fachwissen
Anästhesiologie & Intensivmedizin Topthema: Perioperatives Flüssigkeitsmanagement
© Georg Thieme Verlag Stuttgart · New York

Perioperatives Flüssigkeitsmanagement – Abschätzung des Volumenstatus

Fluid management: Estimation of fluid status
Jochen Renner
,
Ole Broch
,
Berthold Bein
Further Information

Publication History

Publication Date:
23 August 2012 (online)

Zusammenfassung

Die individuelle Reaktion eines Patienten auf eine Volumengabe lässt sich allein anhand der traditionellen kardialen Füllungsdrücke wie dem zentralen Venendruck nur unzureichend vorhersagen. Dynamische Variable der Volumenreagibilität wie die Pulsdruckvariation und die Schlagvolumenvariation unterscheiden hier mit deutlich höherer Sensitivität und Spezifität volumenbedürftige von nicht volumenbedürftigen Patienten, insbesondere im intraoperativen Bereich. Es gibt allerdings eine Reihe von klinischen Faktoren, die die prädiktiven Eigenschaften dieser Variablen beeinflussen können, was die Definition eines allgemein gültigen Schwellenwerts erschwert. Insofern muss man zur Abschätzung einer potenziellen Vorlastreserve im klinischen Alltag die wichtigsten Störgrößen und Einflussfaktoren der dynamischen Variablen kennen.

Abstract

Cardiac filling pressures alone are not appropriate to estimate the effect of a volume challenge on the corresponding change in stroke volume. Dynamic variables of fluid responsiveness have been shown to discriminate with acceptable sensitivity and specificity between responders and non-responders to a volume challenge. However, several clinical confounders have been indentified which potentially influence the predictive power of these variables. Sound knowledge of these confounders and the acknowledgement that there is no unique threshold value for volume optimisation but a considerable „gray zone“ is necessary to fully exploit the advantages of functional haemodynamic monitoring.

Kernaussagen

  • Nur bei etwa 50 % unserer kritisch kranken Patienten kommt es auf eine definierte Volumengabe hin zu einer substanziellen Verbesserung des Herzzeitvolumens auf dem Boden eines optimierten Volumenmanagements.

  • Statische kardiale Füllungsdrücke wie der zentrale Venendruck sind oft nicht geeignet, verlässlich Änderungen der kardialen Vorlast anzuzeigen.

  • Wird der zentrale Venendruck trotz seiner Limitationen zum Monitoring eines optimierten Volumenmangements genutzt, sollte er in Kombination mit einem kontinuierlichen Verfahren zur Herzzeitvolumenmessung interpretiert werden.

  • Mit dem global enddiastolischen Volumen steht eine statisch-volumetrische Variable zur Verfügung, die bei einer Vielzahl von Patienten Änderungen der kardialen Vorlast abbilden kann.

  • Dynamische Variablen der Volumenreagibilität basieren auf beatmungsinduzierten intrathorakalen Druckänderungen, die zu zyklischen Änderungen der kardialen Vorlast mit konsekutiven zyklischen Änderungen des Schlagvolumens führen.

  • Mithilfe der dynamischen Variablen kann unter Berücksichtigung der bekannten Limitationen verlässlicher als mit statischen Füllungsdrücken differenziert werden zwischen Patienten, die von einer Volumengabe profitieren, und Patienten, die nicht profitieren.

  • Für die Pulsdruckvariation scheint es einen sog. „Grau-Zonen-Bereich“ zu geben, der zwischen 9–13 % liegt. 25 % der Patienten zeigen Werte in diesem Bereich, 50 % dieser Patienten sind volumenreagibel.

  • Für die sichere Anwendung dynamischer Variablen im pädiatrischen Bereich gibt es noch zu wenige und zu kontroverse Untersuchungen, sodass eine Empfehlung hier nicht abgegeben werden kann.

  • Mit dem Pleth-Variability-Index steht eine komplett nicht invasive dynamische Variable zur Verfügung, die in ihrer Genauigkeit von einem ungestörten peripheren Perfusionsindex abhängt.

  • Theoretische Überlegungen und vergleichende Untersuchungen mit statischen Vorlastparametern legen nahe, dass – unter Berücksichtigung der korrekten Indikationen und der Limitationen – mittels funktionellen hämodynamischen Monitorings ein optimiertes Volumenmanagement erreicht werden kann. Adäquat gepowerte Untersuchungen, die diesen theoretischen Vorteil anhand eines verbesserten Patientenoutcomes auch praktisch nachweisen, liegen bislang allerdings nicht vor.

Ergänzendes Material

 
  • Literaturverzeichnis

  • 1 Broch O, Bein B, Gruenewald M et al. Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiologica Scandinavica 2011; 55: 686-693
  • 2 Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Critical Care Medicine 2009; 37: 2642-2647
  • 3 Miller TE, Roche AM, Gan TJ. Poor adoption of hemodynamic optimization during major surgery: are we practicing substandard care?. Anesthesia and Analgesia 2011; 112: 1274-1276
  • 4 Rosenberg AL, Dechert RE, Park PK, Bartlett RH. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. Journal of Intensive Care Medicine 2009; 24: 35-46
  • 5 Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, Micek ST, Kollef MH. The importance of fluid management in acute lung injury secondary to septic shock. Chest 2009; 136: 102-109
  • 6 Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Medicine 2003; 29: 352-360
  • 7 Kumar A, Anel R, Bunnell E et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Critical Care Medicine 2004; 32: 691-699
  • 8 Osman D, Ridel C, Ray P, Monnet X et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Critical Care Medicine 2007; 35: 64-68
  • 9 Michard F, Alaya S, Zarka V et al. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 2003; 124: 1900-1908
  • 10 Renner J, Gruenewald M, Brand P et al. Global end-diastolic volume as a variable of fluid responsiveness during acute changing loading conditions. Journal of Cardiothoracic and Vascular Anesthesia 2007; 21: 650-654
  • 11 Berkenstadt H, Friedman Z, Preisman S et al. Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs. British Journal of Anaesthesia 2005; 94: 721-726
  • 12 Cannesson M, Attof Y, Rosamel P et al. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology 2007; 106: 1105-1111
  • 13 De Backer D, Heenen S, Piagnerelli M et al. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Medicine 2005; 31: 517-523
  • 14 Magder S. Clinical usefulness of respiratory variations in arterial pressure. American Journal of Respiratory and Critical Care Medicine 2004; 169: 151-155
  • 15 Trof RJ, Danad I, Reilingh MW et al. Cardiac filling volumes versus pressures for predicting fluid responsiveness after cardiovascular surgery: the role of systolic cardiac function. Critical Care 2011; 15
  • 16 Hollenberg SM, Ahrens TS, Annane D et al. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Critical Care Medicine 2004; 32: 1928-1948
  • 17 Raper R, Sibbald WJ. Misled by the wedge? The Swan-Ganz catheter and left ventricular preload. Chest 1986; 89: 427-434
  • 18 Pinsky MR. Clinical significance of pulmonary artery occlusion pressure. Intensive Care Medicine 2003; 29: 175-178
  • 19 Magder S. Central venous pressure: A useful but not so simple measurement. Critical Care Medicine 2006; 34: 2224-2227
  • 20 Damman K, van Deursen VM, Navis G et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. Journal of the American College of Cardiology 2009; 53: 582-588
  • 21 Shanewise JS, Cheung AT, Aronson S et al. ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. J Am Soc Echocardiogr 1999; 12: 884-900
  • 22 Cheung AT, Savino JS, Weiss SJ et al. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 1994; 81: 376-387
  • 23 Jardin F, Valtier B, Beauchet A et al. Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Medicine 1994; 20: 550-554
  • 24 Godje O, Peyerl M, Seebauer T et al. Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 1998; 113: 1070-1077
  • 25 Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Medicine 2000; 26: 180-187
  • 26 Goedje O, Hoeke K, Lichtwarck-Aschoff M et al. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Critical Care Medicine 1999; 27: 2407-2412
  • 27 Hoeft A, Schorn B, Weyland A et al. Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 1994; 81: 76-86
  • 28 Renner J, Gruenewald M, Quaden R et al. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Critical Care Medicine 2009; 37: 650-658
  • 29 Gruenewald M, Meybohm P, Koerner S et al. Dynamic and volumetric variables of fluid responsiveness fail during immediate postresuscitation period. Critical Care Medicine 2011; 39: 1953-1959
  • 30 Chang MC, Blinman TA, Rutherford EJ et al. Preload assessment in trauma patients during large-volume shock resuscitation. Arch Surg 1996; 131: 728-731
  • 31 Cheatham ML, Nelson LD, Chang MC, Safcsak K. Right ventricular end-diastolic volume index as a predictor of preload status in patients on positive end-expiratory pressure. Critical Care Medicine 1998; 26: 1801-1806
  • 32 Hofer CK, Furrer L, Matter-Ensner S et al. Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. British Journal of Anaesthesia 2005; 94: 748-755
  • 33 Miller PR, Meredith JW, Chang MC. Randomized, prospective comparison of increased preload versus inotropes in the resuscitation of trauma patients: effects on cardiopulmonary function and visceral perfusion. The Journal of Trauma 1998; 44: 107-113
  • 34 Morgan BC, Dillard DH, Guntheroth WG. Effect of cardiac and respiratory cycle on pulmonary vein flow, pressure, and diameter. J Appl Physiol 1966; 21: 1276-1280
  • 35 Pinsky MR, Payen D. Functional hemodynamic monitoring. Critical Care 2005; 9: 566-572
  • 36 Cannesson M, Slieker J, Desebbe O et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesthesia and Analgesia 2008; 106: 1195-1200
  • 37 Renner J, Scholz J, Bein B. Dynamic variables of fluid responsiveness may be related to the type of volume challenge performed. Anesthesia and Analgesia author reply 2007; 104
  • 38 Berkenstadt H, Margalit N, Hadani M et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesthesia and Analgesia 2001; 92: 984-989
  • 39 Charron C, Caille V, Jardin F, Vieillard-Baron A. Echocardiographic measurement of fluid responsiveness. Curr Opin Crit Care 2006; 12: 249-254
  • 40 Kramer A, Zygun D, Hawes H et al. Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest 2004; 126: 1563-1568
  • 41 Michard F, Chemla D, Richard C et al. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 1999; 159: 935-939
  • 42 Auler Jr JO, Galas F, Hajjar L, Santos L et al. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesthesia and analgesia table of contents 2009; 106
  • 43 Reuter DA, Kirchner A, Felbinger TW et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Critical Care Medicine 2003; 31: 1399-1404
  • 44 Hofer CK, Muller SM, Furrer L et al. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 2005; 128: 848-854
  • 45 Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K. Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Critical Care Medicine 2005; 33: 2534-2539
  • 46 Cannesson M, Le Manach Y, Hofer CK et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a "gray zone" approach. Anesthesiology 2011; 115: 231-241
  • 47 Charron C, Fessenmeyer C, Cosson C et al. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesthesia and Analgesia 2006; 102: 1511-1517
  • 48 De Backer D, Heenen S, Piagnerelli M et al. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Medicine 2005; 31: 517-523
  • 49 Renner J, Cavus E, Meybohm P et al. Stroke volume variation during hemorrhage and after fluid loading: impact of different tidal volumes. Acta Anaesthesiologica Scandinavica 2007; 51: 538-544
  • 50 de Waal EE, Rex S, Kruitwagen CL et al. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Critical Care Medicine 2009; 37: 510-515
  • 51 Sander M, Spies CD, Berger K et al. Prediction of volume response under open-chest conditions during coronary artery bypass surgery. Critical Care 2007; 11
  • 52 Renner J, Meybohm P, Hanss R et al. Effects of norepinephrine on dynamic variables of fluid responsiveness during hemorrhage and after resuscitation in a pediatric porcine model. Paediatric Anaesthesia 2009; 19: 688-694
  • 53 Renner J, Gruenewald M, Meybohm P et al. Effect of elevated PEEP on dynamic variables of fluid responsiveness in a pediatric animal model. Paediatric Anaesthesia 2008; 18: 1170-1177
  • 54 Jacques D, Bendjelid K, Duperret S et al. Pulse pressure variation and stroke volume variation during increased intra-abdominal pressure: an experimental study. Critical Care 2001; 15
  • 55 Wyler von Ballmoos M, Takala J, Roeck M et al. Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Critical Care 2010; 14
  • 56 Daudel F, Tuller D, Krahenbuhl S et al. Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study. Critical Care 2010; 14
  • 57 Heenen S, De Backer D, Vincent JL. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted?. Critical Care 2006; 10
  • 58 Soubrier S, Saulnier F, Hubert H et al. Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients?. Intensive Care Medicine 2007; 33: 1117-1124
  • 59 Renner J, Broch O, Duetschke P et al. Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery. British Journal of Anaesthesia 2012; 108: 108-115
  • 60 Pereira de Souza Neto E, Grousson S, Duflo F et al. Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. British Journal of Anaesthesia 2011; 106: 856-864
  • 61 Landsverk SA, Hoiseth LO, Kvandal P et al. Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiology 2008; 109: 849-855
  • 62 Renner J, Broch O, Gruenewald M et al. Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia 2011; 66: 582-9
  • 63 Gan TJ, Soppitt A, Maroof M et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 2002; 97: 820-826
  • 64 Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 1995; 130: 423-429
  • 65 Lopes MR, Oliveira MA, Pereira VO et al. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Critical Care 2007; 11
  • 66 Buettner M, Schummer W, Huettemann E et al. Influence of systolic-pressure-variation-guided intraoperative fluid management on organ function and oxygen transport. British Journal of Anaesthesia 2008; 101: 194-199
  • 67 Bundgaard-Nielsen M, Secher NH, Kehlet H. 'Liberal' vs. 'restrictive' perioperative fluid therapy – a critical assessment of the evidence. Acta Anaesthesiologica Scandinavica 2009; 53: 843-851
  • 68 Michard F, Boussat S, Chemla D et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 2000; 162: 134-138
  • 69 Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. British Journal of Anaesthesia 2005; 95: 746-755
  • 70 Cannesson M, Besnard C, Durand PG et al. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Critical Care 2005; 9: 562-568
  • 71 Solus-Biguenet H, Fleyfel M, Tavernier B et al. Non-invasive prediction of fluid responsiveness during major hepatic surgery. British Journal of Anaesthesia 2006; 97: 808-816
  • 72 Natalini G, Rosano A, Franceschetti ME et al. Variations in arterial blood pressure and photoplethysmography during mechanical ventilation. Anesthesia and Analgesia 2006; 103: 1182-1188
  • 73 Feissel M, Teboul JL, Merlani P et al. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Medicine 2007; 33: 993-999
  • 74 Cannesson M, Desebbe O, Rosamel P et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. British Journal of Anaesthesia 2008; 101: 200-206
  • 75 Renner J, Cavus E, Meybohm P et al. Pulse pressure variation and stroke volume variation during different loading conditions in a paediatric animal model. Acta Anaesthesiologica Scandinavica 2008; 52: 374-380