Frauenheilkunde up2date 2012; 6(6): 375-389
DOI: 10.1055/s-0032-1324916
Geburtshilfe und Perinatalmedizin
Georg Thieme Verlag KG Stuttgart · New York

Pränatale genetische Diagnostik bei ZNS-Fehlbildungen

C. T. Thiel
Further Information

Publication History

Publication Date:
21 December 2012 (online)

Einleitung

Fehlbildungen des zentralen Nervensystems (ZNS) stellen eine klinisch und genetisch heterogene Gruppe von Störungen der frühen Gehirnentwicklung dar. Diese können isoliert auftreten oder auch in Kombination mit weiteren Fehlbildungen und Entwicklungsdefekten, d. h. „syndromal“. Ebenso wie die pränatale sonografische Diagnostik kann auch die pränatale Magnetresonanzuntersuchung (MRT) eine Eingruppierung der fetalen neurologischen Strukturauffälligkeiten des Gehirns bei Feten ermöglichen. Diese bildgebenden Verfahren stellen somit eine Grundlage für eine gezielte Abklärung der zugrunde liegenden genetischen Ursachen dar. Die Fortschritte in der genetischen Aufklärung dieser Krankheitsbilder führen dann nicht nur zu einem besseren Verständnis der Ursachen, sondern auch zu einer deutlichen Verbesserung der prognostischen Einschätzung für das betroffene Kind.

 
  • Literatur

  • 1 Hoch RV, Rubenstein JL, Pleasure S. Genes and signalling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 2009; 20: 378-386
  • 2 Barkovich AJ et al. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135: 1348-1369
  • 3 Huang J et al. Molecular genetics in fetal neurology. Semin Fetal Neonatal Med 2012; 17: 341-346
  • 4 Au KS, Ashley-Koch A, Northrup H. Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 2010; 16: 6-15
  • 5 Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet 2003; 4: 784-793
  • 6 Dolk H et al. Heterogeneity of neural tube defects in Europe: the significance of site of defect and presence of other major anomalies in relation to geographic differences in prevalence. Teratology 1991; 44: 547-559
  • 7 Seller MJ, Kalousek DK. Neural tube defects: heterogeneity and homogeneity. Am J Med Genet Suppl 1986; 2: 77-87
  • 8 Stiefel D et al. Tethering of the spinal cord in mouse fetuses and neonates with spina bifida. J Neurosurg 2003; 99: 206-213
  • 9 Sepulveda W et al. Chromosomal abnormalities in fetuses with open neural tube defects: prenatal identification with ultrasound. Ultrasound Obstet Gynecol 2004; 23: 352-356
  • 10 Croen LA, Shaw GM, Lammer EJ. Holoprosencephaly: epidemiologic and clinical characteristics of a California population. Am J Med Genet 1996; 64: 465-472
  • 11 Cohen Jr. MM. Holoprosencephaly: clinical, anatomic, and molecular dimensions. Birth Defects Res A Clin Mol Teratol 2006; 76: 658-673
  • 12 Bellone S et al. Etiopathogenetic advances and management of holoprosencephaly: from bench to bedside. Panminerva Med 2010; 52: 345-354
  • 13 Solomon BD, Gropman A, Muenke M. Holoprosencephaly overview. In: Pagon RA, Bird TD, Dolan CR, et al., eds. Gene Reviews. Seattle: University of Seattle; 1993
  • 14 Dubourg C et al. Holoprosencephaly. Orphanet J Rare Dis 2007; 2: 8
  • 15 Lynn RB et al. Agenesis of the corpus callosum. Arch Neurol 1980; 37: 444-445
  • 16 Volpe P et al. Characteristics, associations, and outcome of partial agenesis of the corpus callosum in the fetus. Ultrasound Obstet Gynecol 2006; 27: 509-516
  • 17 Fratelli N et al. Outcome of prenatally diagnosed agenesis of the corpus callosum. Prenat Diagn 2007; 27: 512-517
  • 18 Verrotti A et al. New trends in neuronal migration disorders. Eur J Paediatr Neurol 2010; 14: 1-12
  • 19 Giannopoulos S et al. Periventricular nodular heterotopia and epilepsy. Intern Med J 2008; 38: 675-676
  • 20 Lu J et al. Overlapping expression of ARFGEF2 and Filamin A in the neuroependymal lining of the lateral ventricles: insights into the cause of periventricular heterotopia. J Comp Neurol 2006; 494: 476-484
  • 21 Dobyns WB. The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 2010; 51 (Suppl. 01) 5-9
  • 22 Kato M, Dobyns WB. Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 2003; 12 Spec No 1: R89-R96
  • 23 Kumar RA et al. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 2010; 19: 2817-2827
  • 24 Teber S et al. Severe muscle-eye-brain disease is associated with a homozygous mutation in the POMGnT1 gene. Eur J Paediatr Neurol 2008; 12: 133-136
  • 25 Hong SE et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26: 93-96
  • 26 Leventer RJ, Guerrini R, Dobyns WB. Malformations of cortical development and epilepsy. Dialogues Clin Neurosci 2008; 10: 47-62
  • 27 Baala L et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet 2007; 39: 454-456
  • 28 Ekici AB et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol 2010; 1: 99-112
  • 29 Grinberg I et al. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet 2004; 36: 1053-1055
  • 30 Zhang J, Williams MA, Rigamonti D. Genetics of human hydrocephalus. J Neurol 2006; 253: 1255-1266