Semin Thromb Hemost 2013; 39(01): 059-065
DOI: 10.1055/s-0032-1331156
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Protein Kinase C ε in Hematopoiesis: Conductor or Selector?

Giuliana Gobbi
1   Department of Biomedical, Biotechnological and Translational Sciences, Human Anatomy Section (S.Bi.Bi.T.), University of Parma, Ospedale Maggiore, Parma, Italy
,
Prisco Mirandola
1   Department of Biomedical, Biotechnological and Translational Sciences, Human Anatomy Section (S.Bi.Bi.T.), University of Parma, Ospedale Maggiore, Parma, Italy
,
Cecilia Carubbi
1   Department of Biomedical, Biotechnological and Translational Sciences, Human Anatomy Section (S.Bi.Bi.T.), University of Parma, Ospedale Maggiore, Parma, Italy
,
Daniela Galli
1   Department of Biomedical, Biotechnological and Translational Sciences, Human Anatomy Section (S.Bi.Bi.T.), University of Parma, Ospedale Maggiore, Parma, Italy
2   Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
,
Marco Vitale
1   Department of Biomedical, Biotechnological and Translational Sciences, Human Anatomy Section (S.Bi.Bi.T.), University of Parma, Ospedale Maggiore, Parma, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
24 December 2012 (online)

Abstract

Mainly known for its cardioprotective properties, protein kinase C isoform ε (PKCε) is also progressively coming of age in terms of its role in hematopoiesis regulation, particularly that is related to erythropoiesis, megakaryocytopoiesis, and platelet production. Data available to date show that PKCε is differentially regulated in erythrocyte and megakaryocyte progenitors, strongly suggesting an addressing role toward maturation of either lineage. This function appears to be played by either selecting progenitors or conducting maturation toward a specific fate. Inappropriate expression of PKCε in human mature platelets is discussed as a recently described example of functional modification that may acquire pathophysiologic relevance in major thrombotic diseases. Preliminary evidence suggests that PKCε expression may be used as a surrogate marker for thrombotic risk stratification and as a possible target for antiplatelet therapy in patients with thrombotic disorders.

 
  • References

  • 1 Hug H, Sarre TF. Protein kinase C isoenzymes: divergence in signal transduction?. Biochem J 1993; 291 (Pt 2) 329-343
  • 2 Goodnight J, Mischak H, Mushinski JF. Selective involvement of protein kinase C isozymes in differentiation and neoplastic transformation. Adv Cancer Res 1994; 64: 159-209
  • 3 Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995; 9 (7) 484-496
  • 4 Farah CA, Sossin WS. The role of C2 domains in PKC signaling. Adv Exp Med Biol 2012; 740: 663-683
  • 5 Churchill EN, Mochly-Rosen D. The roles of PKCdelta and epsilon isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem Soc Trans 2007; 35 (Pt 5) 1040-1042
  • 6 Duquesnes N, Lezoualc'h F, Crozatier B. PKC-delta and PKC-epsilon: foes of the same family or strangers?. J Mol Cell Cardiol 2011; 51 (5) 665-673
  • 7 Galli D, Gobbi G, Carrubbi C , et al. The role of PKCε-dependent signaling for cardiac differentiation. Histochem Cell Biol 2012; ; [Epub ahead of print]
  • 8 Van Kolen K, Pullan S, Neefs JM, Dautzenberg FM. Nociceptive and behavioural sensitisation by protein kinase Cepsilon signalling in the CNS. J Neurochem 2008; 104 (1) 1-13
  • 9 Aksoy E, Goldman M, Willems F. Protein kinase C epsilon: a new target to control inflammation and immune-mediated disorders. Int J Biochem Cell Biol 2004; 36 (2) 183-188
  • 10 Mirandola P, Gobbi G, Masselli E , et al. Protein kinase Cε regulates proliferation and cell sensitivity to TGF-1β of CD4+ T lymphocytes: implications for Hashimoto thyroiditis. J Immunol 2011; 187 (9) 4721-4732
  • 11 Newton PM, Messing RO. The substrates and binding partners of protein kinase Cepsilon. Biochem J 2010; 427 (2) 189-196
  • 12 Akita Y. Protein kinase C-epsilon (PKC-epsilon): its unique structure and function. J Biochem 2002; 132 (6) 847-852
  • 13 Bassini A, Zauli G, Migliaccio G , et al. Lineage-restricted expression of protein kinase C isoforms in hematopoiesis. Blood 1999; 93 (4) 1178-1188
  • 14 Mirandola P, Gobbi G, Ponti C, Sponzilli I, Cocco L, Vitale M. PKCepsilon controls protection against TRAIL in erythroid progenitors. Blood 2006; 107 (2) 508-513
  • 15 Vitale M, Gobbi G, Mirandola P , et al. TNF-related apoptosis-inducing ligand (TRAIL) and erythropoiesis: a role for PKC epsilon. Eur J Histochem 2006; 50 (1) 15-18
  • 16 Goldfarb AN, Delehanty LL, Wang D, Racke FK, Hussaini IM. Stromal inhibition of megakaryocytic differentiation correlates with blockade of signaling by protein kinase C-epsilon and ERK/MAPK. J Biol Chem 2001; 276 (31) 29526-29530
  • 17 Racke FK, Wang D, Zaidi Z , et al. A potential role for protein kinase C-epsilon in regulating megakaryocytic lineage commitment. J Biol Chem 2001; 276 (1) 522-528
  • 18 Gobbi G, Mirandola P, Sponzilli I , et al. Timing and expression level of protein kinase C epsilon regulate the megakaryocytic differentiation of human CD34 cells. Stem Cells 2007; 25 (9) 2322-2329
  • 19 Gobbi G, Mirandola P, Carubbi C , et al. Phorbol ester-induced PKCepsilon down-modulation sensitizes AML cells to TRAIL-induced apoptosis and cell differentiation. Blood 2009; 113 (13) 3080-3087
  • 20 Carubbi C, Mirandola P, Mattioli M , et al. Protein kinase C ε expression in platelets from patients with acute myocardial infarction. PLoS ONE 2012; 7 (10) e46409
  • 21 Iwasaki H, Akashi K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 2007; 26 (6) 726-740
  • 22 Battinelli EM, Hartwig JH, Italiano Jr JE. Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin Hematol 2007; 14 (5) 419-426
  • 23 Kaushansky K. Lineage-specific hematopoietic growth factors. N Engl J Med 2006; 354 (19) 2034-2045
  • 24 Romeo PH, Prandini MH, Joulin V , et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 1990; 344 (6265) 447-449
  • 25 Ghinassi B, Sanchez M, Martelli F , et al. The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood 2007; 109 (4) 1460-1471
  • 26 Starck J, Weiss-Gayet M, Gonnet C, Guyot B, Vicat JM, Morlé F. Inducible Fli-1 gene deletion in adult mice modifies several myeloid lineage commitment decisions and accelerates proliferation arrest and terminal erythrocytic differentiation. Blood 2010; 116 (23) 4795-4805
  • 27 Olthof SG, Fatrai S, Drayer AL, Tyl MR, Vellenga E, Schuringa JJ. Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis. Stem Cells 2008; 26 (7) 1732-1742
  • 28 Krumsiek J, Marr C, Schroeder T, Theis FJ. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS ONE 2011; 6 (8) e22649
  • 29 Redig AJ, Platanias LC. The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J Interferon Cytokine Res 2007; 27 (8) 623-636
  • 30 Shiroshita N, Musashi M, Sakurada K , et al. Involvement of protein kinase C-epsilon in signal transduction of thrombopoietin in enhancement of interleukin-3-dependent proliferation of primitive hematopoietic progenitors. J Pharmacol Exp Ther 2001; 297 (3) 868-875
  • 31 Krantz SB. Erythropoietin. Blood 1991; 77 (3) 419-434
  • 32 Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA 2005; 293 (1) 90-95
  • 33 Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995; 83 (1) 59-67
  • 34 Shetty V, Hussaini S, Broady-Robinson L , et al. Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates. Blood 2000; 96 (4) 1388-1392
  • 35 Zamai L, Secchiero P, Pierpaoli S , et al. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood 2000; 95 (12) 3716-3724
  • 36 Harper N, Hughes MA, Farrow SN, Cohen GM, MacFarlane M. Protein kinase C modulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by targeting the apical events of death receptor signaling. J Biol Chem 2003; 278 (45) 44338-44347
  • 37 Gillespie S, Zhang XD, Hersey P. Variable expression of protein kinase C epsilon in human melanoma cells regulates sensitivity to TRAIL-induced apoptosis. Mol Cancer Ther 2005; 4 (4) 668-676
  • 38 Gubina E, Rinaudo MS, Szallasi Z, Blumberg PM, Mufson RA. Overexpression of protein kinase C isoform epsilon but not delta in human interleukin-3-dependent cells suppresses apoptosis and induces bcl-2 expression. Blood 1998; 91 (3) 823-829
  • 39 Tenen DG, Hromas R, Licht JD, Zhang DE. Transcription factors, normal myeloid development, and leukemia. Blood 1997; 90 (2) 489-519
  • 40 Rosenbauer F, Wagner K, Kutok JL , et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36 (6) 624-630
  • 41 Maraldi T, Bertacchini J, Benincasa M , et al. Reverse-phase protein microarrays (RPPA) as a diagnostic and therapeutic guide in multidrug resistant leukemia. Int J Oncol 2011; 38 (2) 427-435
  • 42 Maraldi T, Prata C, Caliceti C , et al. VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis. Int J Oncol 2010; 36 (6) 1581-1589
  • 43 Kim HH, Ahn KS, Han H, Choung SY, Choi SY, Kim IH. Decursin and PDBu: two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells. Leuk Res 2005; 29 (12) 1407-1413
  • 44 Hayun M, Okun E, Hayun R , et al. Synergistic effect of AS101 and Bryostatin-1 on myeloid leukemia cell differentiation in vitro and in an animal model. Leukemia 2007; 21 (7) 1504-1513
  • 45 Strair RK, Schaar D, Goodell L , et al. Administration of a phorbol ester to patients with hematological malignancies: preliminary results from a phase I clinical trial of 12-O-tetradecanoylphorbol-13-acetate. Clin Cancer Res 2002; 8 (8) 2512-2518
  • 46 Han ZT, Zhu XX, Yang RY , et al. Effect of intravenous infusions of 12-O-tetradecanoylphorbol-13-acetate (TPA) in patients with myelocytic leukemia: preliminary studies on therapeutic efficacy and toxicity. Proc Natl Acad Sci USA 1998; 95 (9) 5357-5361
  • 47 Schaar D, Goodell L, Aisner J , et al. A phase I clinical trial of 12- O-tetradecanoylphorbol-13-acetate for patients with relapsed/refractory malignancies. Cancer Chemother Pharmacol 2006; 57 (6) 789-795
  • 48 Hofmann J. The potential for isoenzyme-selective modulation of protein kinase C. FASEB J 1997; 11 (8) 649-669
  • 49 Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem 1995; 270 (48) 28495-28498
  • 50 Dent P, Grant S. Pharmacologic interruption of the mitogen-activated extracellular-regulated kinase/mitogen-activated protein kinase signal transduction pathway: potential role in promoting cytotoxic drug action. Clin Cancer Res 2001; 7 (4) 775-783
  • 51 Abrahm JL, Gerson SL, Hoxie JA, Tannenbaum SH, Cassileth PA, Cooper RA. Differential effects of phorbol esters on normal myeloid precursors and leukemic cells: basis for autologous bone marrow reconstitution in acute nonlymphocytic leukemia using phorbol ester-treated bone marrow from patients in remission. Cancer Res 1986; 46 (7) 3711-3716
  • 52 Wu SF, Huang Y, Hou JK , et al. The downregulation of onzin expression by PKCepsilon-ERK2 signaling and its potential role in AML cell differentiation. Leukemia 2010; 24 (3) 544-551
  • 53 Park SM, Schickel R, Peter ME. Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol 2005; 17 (6) 610-616
  • 54 Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest 2005; 115 (12) 3339-3347
  • 55 Ballen KK, Ritchie AJ, Murphy C, Handin RI, Ewenstein BM. Expression and activation of protein kinase C isoforms in a human megakaryocytic cell line. Exp Hematol 1996; 24 (13) 1501-1508
  • 56 Melloni E, Secchiero P, Celeghini C , et al. Functional expression of TRAIL and TRAIL-R2 during human megakaryocytic development. J Cell Physiol 2005; 204 (3) 975-982
  • 57 De Botton S, Sabri S, Daugas E , et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 2002; 100 (4) 1310-1317
  • 58 Saurin AT, Durgan J, Cameron AJ, Faisal A, Marber MS, Parker PJ. The regulated assembly of a PKCepsilon complex controls the completion of cytokinesis. Nat Cell Biol 2008; 10 (8) 891-901
  • 59 Geddis AE, Fox NE, Tkachenko E, Kaushansky K. Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow ingression followed by furrow regression. Cell Cycle 2007; 6 (4) 455-460
  • 60 Avecilla ST, Hattori K, Heissig B , et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10 (1) 64-71
  • 61 Junt T, Schulze H, Chen Z , et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 2007; 317 (5845) 1767-1770
  • 62 Italiano Jr JE, Lecine P, Shivdasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 1999; 147 (6) 1299-1312
  • 63 Italiano Jr JE, Patel-Hett S, Hartwig JH. Mechanics of proplatelet elaboration. J Thromb Haemost 2007; 5 (Suppl. 01) 18-23
  • 64 Thon JN, Italiano JE. Platelets: production, morphology and ultrastructure. Handbook Exp Pharmacol 2012; 210 (210) 3-22
  • 65 Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost 2010; 8 (3) 454-462
  • 66 Strehl A, Munnix IC, Kuijpers MJ , et al. Dual role of platelet protein kinase C in thrombus formation: stimulation of pro-aggregatory and suppression of procoagulant activity in platelets. J Biol Chem 2007; 282 (10) 7046-7055
  • 67 Tsukuda M, Asaoka Y, Sekiguchi K, Kikkawa U, Nishizuka Y. Properties of protein kinase C subspecies in human platelets. Biochem Biophys Res Commun 1988; 155 (3) 1387-1395
  • 68 Quinton TM, Kim S, Dangelmaier C , et al. Protein kinase C- and calcium-regulated pathways independently synergize with Gi pathways in agonist-induced fibrinogen receptor activation. Biochem J 2002; 368 (Pt 2) 535-543
  • 69 Crosby D, Poole AW. Physical and functional interaction between protein kinase C delta and Fyn tyrosine kinase in human platelets. J Biol Chem 2003; 278 (27) 24533-24541
  • 70 Bynagari-Settipalli YS, Lakhani P, Jin J , et al. Protein kinase C isoform ε negatively regulates ADP-induced calcium mobilization and thromboxane generation in platelets. Arterioscler Thromb Vasc Biol 2012; 32 (5) 1211-1219
  • 71 Buensuceso CS, Obergfell A, Soriani A , et al. Regulation of outside-in signaling in platelets by integrin-associated protein kinase C beta. J Biol Chem 2005; 280 (1) 644-653
  • 72 Pears CJ, Thornber K, Auger JM , et al. Differential roles of the PKC novel isoforms, PKCdelta and PKCepsilon, in mouse and human platelets. PLoS ONE 2008; 3 (11) e3793
  • 73 Unsworth AJ, Smith H, Gissen P, Watson SP, Pears CJ. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem 2011; 286 (24) 21073-21082
  • 74 Flaumenhaft R, Mairuhu AT, Italiano JE. Platelet- and megakaryocyte-derived microparticles. Semin Thromb Hemost 2010; 36 (8) 881-887
  • 75 Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 2003; 101 (6) 2285-2293
  • 76 Bahou WF, Gnatenko DV. Platelet transcriptome: the application of microarray analysis to platelets. Semin Thromb Hemost 2004; 30 (4) 473-484
  • 77 Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16 (9) 961-966
  • 78 Lippi G, Franchini M, Targher G. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 2011; 8 (9) 502-512
  • 79 Chu SG, Becker RC, Berger PB , et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 2010; 8 (1) 148-156
  • 80 Yee DL, Bray PF. Clinical and functional consequences of platelet membrane glycoprotein polymorphisms. Semin Thromb Hemost 2004; 30 (5) 591-600
  • 81 Linden MD, Tran H, Woods R, Tonkin A. High platelet reactivity and antiplatelet therapy resistance. Semin Thromb Hemost 2012; 38 (2) 200-212
  • 82 Oshevski S, Le Bousse-Kerdilès MC, Clay D , et al. Differential expression of protein kinase C isoform transcripts in human hematopoietic progenitors undergoing differentiation. Biochem Biophys Res Commun 1999; 263 (3) 603-609
  • 83 Vannucchi AM, Paoletti F, Linari S , et al. Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice. Blood 2000; 95 (8) 2559-2568