TumorDiagnostik & Therapie 2013; 34(5): 275-279
DOI: 10.1055/s-0033-1350220
Thieme Onkologie aktuell
© Georg Thieme Verlag KG Stuttgart · New York

Prognostische Relevanz genetischer Aberrationen der akuten myeloischen Leukämie bei Kindern und Jugendlichen

Genetic Prognostic Factors in Childhood Acute Myeloid Leukemia
D. Reinhardt
,
C. von Neuhoff
,
A. Sander
,
U. Creutzig
Further Information

Publication History

Publication Date:
20 August 2013 (online)

Zusammenfassung

Die Prognose für Kinder und Jugendlichen mit akuter myeloischer Leukämie konnte durch zunehmend intensivere Therapieprotokolle der AML-BFM-Studiengruppe deutlich verbessert werden. Voraussetzung ist neben einer guten Supportivtherapie zur Prävention und Beherrschung von Komplikationen eine risikoadaptierte Therapie. In Deutschland wurden zwischen 1998 und 2010 912 Kinder und Jugendliche als Protokollpatienten in die AML-BFM-Studien 98 (n = 413) und 2004 (n = 499) eingeschlossen. Das 5-Jahre-ereignisfrei (EFS) und Gesamtüberleben (OS) beträgt 57 ± 2 % bzw. 71 ± 2 %. Während in den früheren Studien Zellzahl, Zytomorphologie und Zytochemie eingesetzt wurden, konnten in den letzten Jahren in der Zyto- und Molekulargenetik zunehmend relevante Prognosefaktoren identifiziert werden. Die Gruppe mit relativ günstiger Prognose umfasst die AML mit t(8;21), inv(16), t(15;17), t(1;11) sowie mit normalem Karyotyp und NPM1-Mutation (n = 253; EFS 74 ± 3 %, OS 88 ± 2 %). Eine schlechte Prognose haben AML mit t(4;11), t(5;11), t(6;11), t(10;11); t(6;9), t(7;12), t(9;22), Monosomie 7, kombinierte FLT3-ITD/WT1-Mutationen, der(12 p)-Aberration und AML mit komplexem Karyotyp (n = 101; EFS 30 ± 6 %; OS 56 ± 5 %). Die Gruppe mit intermediärer ­Prognose (IR) umfasst alle anderen Subgruppen, insbesondere AML mit normalem Karyotyp, FLT3-ITD oder t(9;11) (n = 558; EFS 43 ± 2 %; OS 64 ± 2 %). Für die Wahl der adäquaten Therapie muss in jedem Fall das Therapieansprechen berücksichtigt werden. Schlussfolgerung: Die Definition der genetischen Prognosefaktoren der AML bei Kindern ermöglicht eine verbesserte prognostische Einschätzung und bildet neben dem Therapieansprechen die Grundlage für Therapieempfehlungen.

Abstract

The survival rate of children and adolescents suffering acute myeloid leukemia (AML) has been significantly improved within the last decades. This has been achieved by a continuously intensified therapy and progress in supportive care to prevent and treat complications. In Germany, the AML-BFM trials 98 (n = 413) and 2004 (n = 499) enrolled 912 children and adolescents as protocol patients (1998 – 2010). The 5-year-overall survival was 71 ± 2 %. In the previous studies prognosis and subsequent treatment stratification based on morphology, cytochemistry and white blood cell count. Today, the identification of new genetic aberrations in AML enables a genetically determined estimation of prognosis, although treatment response must be considered for treatment stratification. The group with a favorable prognosis summarized AML with t(8;21), inv(16), t(15;17), t(1;11), and AML with normal karyotype and NPM1-mutation (n = 253; EFS 74 ± 3 %, OS 88 ± 2 %). A poor prognosis (HR-group) must be expected in AML with t(4;11), t(5;11), t(6;11), t(6;9), t(7;12), t(9;22), Monosomy 7, combined FLT3 / WT1-mutation, and AML with der(12 p)-aberration (n = 101; EFS 30 ± 5 %; OS 56 ± 5 %). The intermediate group summarizes all other subgroups especially AML with normal karyotyp, AML with FLT3-ITD or t(9;11) (n = 558; EFS 43 ± 2 %; OS 64 ± 2 %). The validation of the internationally identified, genetically determined prognostic factors within the AML-BFM (Germany) study population will support treatment recommendations.

 
  • Literatur

  • 1 Abrahamsson J, Forestier E, Heldrup J et al. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J Clin Oncol 2011; 29: 310-315
  • 2 Balgobind BV, Raimondi SC, Harbott J et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009; 114: 2489-2496
  • 3 Balgobind BV, Van den Heuvel-Eibrink MM, De Menezes RX et al. Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica 2011; 96: 221-230
  • 4 Coenen EA, Raimondi SC, Harbott J et al. Prognostic significance of additional cytogenetic aberrations in 733 de novo pediatric 11q23/MLL-rearranged AML patients: results of an international study. Blood 2011; 117: 7102-7111
  • 5 Cooper TM, Franklin J, Gerbing RB et al. AAML03P1, a pilot study of the safety of gemtuzumab ozogamicin in combination with chemotherapy for newly diagnosed childhood acute myeloid leukemia: A report from the children’s oncology group. Cancer 2011;
  • 6 Corbacioglu S, Kilic M, Westhoff MA et al. Newly identified c-KIT receptor tyrosine kinase ITD in childhood AML induces ligand-independent growth and is responsive to a synergistic effect of imatinib and rapamycin. Blood 2006; 108: 3504-3513
  • 7 Creutzig U, Berthold F, Boos J et al. Verbesserung der Prognose bei Kindern mit AML: Ergebnisse der Studie AML-BFM 93. Klin Padiatr 2001; 213: 1-11
  • 8 Creutzig U, Ritter J, Ludwig WD et al. Klassifikation der AML nach morphologischen, immunologischen und zytogenetischen Kriterien – Übersicht unter Berücksichtigung der Subtypen in der Studie AML-BFM-87. Klin Padiatr 1993; 205: 272-280
  • 9 Creutzig U, Ritter J, Schellong G. Identification of two risk groups in childhood acute myelogenous leukemia after therapy intensification in the study AML-BFM-83 as compared with study AML-BFM-78. Blood 1990; 75: 1932-1940
  • 10 Creutzig U, Zimmermann M, Bourquin JP et al. Favorable outcome in infants with AML after intensive first- and second-line treatment: an AML-BFM study group report. Leukemia 2011;
  • 11 Creutzig U, Zimmermann M, Bourquin JP et al. Second induction with high-dose cytarabine and mitoxantrone: different impact on pediatric AML patients with t(8;21) and with inv(16). Blood 2011; 118: 5409-5415
  • 12 Creutzig U, Zimmermann M, Lehrnbecher T et al. Less toxicity by optimizing chemotherapy, but not by addition of granulocyte colony-stimulating factor in children and adolescents with acute myeloid leukemia: results of AML-BFM 98. J Clin Oncol 2006; 24: 4499-4506
  • 13 Creutzig U, Zimmermann M, Ritter J et al. Definition of a standard-risk group in children with AML. Br J Haematol 1999; 104: 630-639
  • 14 Creutzig U, Zimmermann M, Ritter J et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia 2005; 19: 2030-2042
  • 15 Damm F, Thol F, Hollink I et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia 2011; 25: 1704-1710
  • 16 Goemans BF, Zwaan CM, Miller M et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005; 19: 1536-1542
  • 17 Harrison CJ, Hills RK, Moorman AV et al. Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol 2010; 28: 2674-2681
  • 18 Hasle H, Alonzo TA, Auvrignon A et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood 2007; 109: 4641-4647
  • 19 Hollink IH, Van den Heuvel-Eibrink MM, Arentsen-Peters ST et al. NUP98 / NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 2011; 118: 3645-3656
  • 20 Hollink IH, Van den Heuvel-Eibrink MM, Arentsen-Peters ST et al. Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica 2011; 96: 384-392
  • 21 Hollink IH, Van den Heuvel-Eibrink MM, Zimmermann M et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009; 113: 5951-5960
  • 22 Hollink IH, Zwaan CM, Zimmermann M et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 2009; 23: 262-270
  • 23 Kalbfleisch J, Prentice R. The Statistical Analysis of Failure Time Data. New York, NY: Wiley; 2002
  • 24 Krance RA, Hurwitz CA, Head DR et al. Experience with 2-chlorodeoxyadenosine in previously untreated children with newly diagnosed acute myeloid leukemia and myelodysplastic diseases. J Clin Oncol 2001; 19: 2804-2811
  • 25 Lehrnbecher T, Ethier MC, Zaoutis T et al. International variations in infection supportive care practices for paediatric patients with acute myeloid leukaemia. Br J Haematol 2009; 147: 125-128
  • 26 Lehrnbecher T, Kaiser J, Varwig D et al. Antifungal usage in children undergoing intensive treatment for acute myeloid leukemia: analysis of the multicenter clinical trial AML-BFM 93. Eur J Clin Microbiol Infect Dis 2007; 26: 735-738
  • 27 Lie SO, Abrahamsson J, Clausen N et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down’s syndrome: results of NOPHO-AML trials. Br J Haematol 2003; 122: 217-225
  • 28 Meshinchi S, Stirewalt DL, Alonzo TA et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 2008;
  • 29 Rubnitz JE, Inaba H, Dahl G et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 2010; 11: 543-552
  • 30 Staffas A, Kanduri M, Hovland R et al. Presence of FLT3-ITD and high BAALC expression are independent prognostic markers in childhood acute myeloid leukemia. Blood 2011; 118: 5905-5913
  • 31 Steinbach D, Wilhelm B, Kiermaier HR et al. Long term survival in children with acute leukaemia and complications requiring mechanical ventilation. Arch Dis Child 2011; 96: 1026-1032
  • 32 Sung L, Aplenc R, Zaoutis T et al. Infections in pediatric acute myeloid leukemia: lessons learned and unresolved questions. Pediatr Blood Cancer 2008; 51: 458-460
  • 33 von Neuhoff C, Reinhardt D, Sander A et al. Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 2010; 28: 2682-2689
  • 34 Zwaan CM, Meshinchi S, Radich JP et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 2003; 102: 2387-2394