RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000144.xml
Zeitschrift für Orthomolekulare Medizin 2014; 12(2): 9-13
DOI: 10.1055/s-0034-1368510
DOI: 10.1055/s-0034-1368510
Wissen
Fetal Programming – gesundes Altern beginnt im Mutterleib
Weitere Informationen
Publikationsverlauf
Publikationsdatum:
25. Juni 2014 (online)

Zusammenfassung
Malnutrition im Mutterleib sowie paternale Fehlernährung begünstigen das Auftreten des metabolischen Syndroms und seiner Folgeerkrankungen im Laufe des Lebens. Nach derzeitigem Wissensstand liegen der fetalen Programmierung epigenetische Modifikationen zugrunde. Ein protektiver Einfluss von Antioxidanzien deutet sich an.
-
Literatur
- 1 Osmond C, Barker DJ, Winter P et al. Early growth and death from cardiovascular disease in women. BMJ 1993; 307: 1519-1524
- 2 Hales CN, Barker DJ, Clark PM et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303: 1019-1022
- 3 Hales CN, Barker DJ. The thrifty phenotype hypothesis: Type 2 diabetes. Br Med Bull 2001; 60: 5-20
- 4 Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595-601
- 5 Singh RR, Cullen-McEwen LA, Kett MM et al. Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol 2007; 579: 503-513
- 6 Pfab T, Slowinski T, Godes M. Low birth weight, a risk factor for cardiovascular diseases in later life, is already associated with elevated fetal glycosylated hemoglobin at birth. Circulation 2006; 114: 1687-1692
- 7 Li J, Wang Z-N, Schlemm L et al. Low birth weight and elevated head-to-abdominal circumference ratio are associated with elevated fetal glycated serum protein concentrations. J Hypertens 2011; 29: 1712-1718
- 8 Goldman SL, Hirata T. Attenuated Response to Insulin in Very Low Birthweight Infants. Pediatr Res 1980; 14: 50-53
- 9 Pollak A, Cowett RM, Schwartz R, Oh W. Glucose Disposal in Low-Birth-Weight Infants During Steady-State Hyperglycemia: Effects of Exogenous Insulin Administration. Pediatrics 1978; 61: 546-549
- 10 Hofman PL, Cutfield WS, Robinson EM et al. Insulin resistance in short children with intrauterine growth retardation. J Clin Endocrinol Metab 1997; 82: 402-406
- 11 Sadiq HF, Das UG, Tracy TF, Devaskar SU. Intra-uterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters. Brain Res 1999; 823: 96-103
- 12 al-Ghazali W, Chita SK, Chapman MG, Allan LD. Evidence of redistribution of cardiac output in asymmetrical growth retardation. Br J Obstet Gynaecol 1989; 96: 697-704
- 13 Baschat AA. Fetal responses to placental insufficiency: an update. BJOG 2004; 111: 1031-1041
- 14 Lumbers ER, Yu ZY, Gibson KJ. The selfish brain and the Barker hypothesis. Clin Exp Pharmacol Physiol 2001; 28: 942-947
- 15 Bueno MP, Barini R, Gonçalves FLL et al. Experimental rat model for fetal growth restriction: effects on liver glycogen and intestinal and renal morphometry. Rev Bras Ginecol Obstet 2010; 32: 163-168
- 16 Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 1999; 353: 1789-1792
- 17 Bygren LO, Kaati G, Edvinsson S. Longevity determined by paternal ancestorsʼ nutrition during their slow growth period. Acta Biotheor März 2001; 49: 53-59
- 18 Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parentsʼ and grandparentsʼ slow growth period. Eur J Hum Genet 2002; 10: 682-688
- 19 Chen Y-P, Xiao X-M, Li J et al. Paternal body mass index (BMI) is associated with offspring intrauterine growth in a gender dependent manner. PLoS ONE 2012; 7: e36329
- 20 Anderson LM, Riffle L, Wilson R et al. Preconceptional fasting of fathers alters serum glucose in offspring of mice. Nutrition 2006; 22: 327-331
- 21 Ng S-F, Lin RCY, Laybutt DR et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 2010; 467: 963-966
- 22 Bakke JL, Lawrence NL, Robinson S, Bennett J. Observations on the untreated progeny of hypothyroid male rats. Metabolism 1976; 25: 437-444
- 23 Lillycrop KA, Phillips ES, Jackson AA et al. Dietary Protein Restriction of Pregnant Rats Induces and Folic Acid Supplementation Prevents Epigenetic Modification of Hepatic Gene Expression in the Offspring. J Nutr 2005; 135: 1382-1386
- 24 Pham TD, MacLennan NK, Chiu CT et al. Uteroplacental insufficiency increases apoptosis and alters p 53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 2003; 285: R962-970
- 25 Bogdarina I, Welham S, King PJ et al. Epigenetic Modification of the Renin-Angiotensin System in the Fetal Programming of Hypertension. Circ Res 2007; 100: 520-526
- 26 Weaver ICG, Cervoni N, Champagne FA et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847-854
- 27 Sinclair KD, Allegrucci C, Singh R et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci 2007; 104: 19351-19356
- 28 Szyf M. The early life environment and the epigenome. Biochim Biophys Acta 2009; 1790: 878-885
- 29 Hitchler MJ, Domann FE. An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 2007; 43: 1023-1036
- 30 Sohal RS, Allen RG, Nations C. Oxygen free radicals play a role in cellular differentiation: an hypothesis. J Free Radic Biol Med 1986; 2: 175-181
- 31 Cambonie G, Comte B, Yzydorczyk C et al. Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1236-1245
- 32 Chatterjee PK, Cuzzocrea S, Brown PA et al. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 2000; 58: 658-673
- 33 Dolinsky VW, Rueda-Clausen CF, Morton JS et al. Continued Postnatal Administration of Resveratrol Prevents Diet-Induced Metabolic Syndrome in Rat Offspring Born Growth Restricted. Diabetes 2011; 60: 2274-2284
- 34 Vieira-Filho LD, Cabral EV, Santos FTJ et al. Alpha-tocopherol prevents intrauterine undernutrition-induced oligonephronia in rats. Pediatr Nephrol 2011; 26: 2019-2029
- 35 Reiter RJ, Melchiorri D, Sewerynek E et al. A review of the evidence supporting melatoninʼs role as an antioxidant. J Pineal Res 1995; 18: 1-11
- 36 Tan D-X, Manchester LC, Terron MP et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?. J Pineal Res 2007; 42: 28-42
- 37 Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab 2005; 2: 22
- 38 Abe M, Reiter RJ, Orhii PB et al. Inhibitory effect of melatonin on cataract formation in newborn rats: Evidence for an antioxidative role for melatonin. J Pineal Res 1994; 17: 94-100