Synthesis 2014; 46(20): 2734-2746
DOI: 10.1055/s-0034-1378453
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 8-Bromo-7-chloro[1,2,4]triazolo[4,3-c]pyrimidines, Their Ring Rearrangement to [1,5-c] Analogues, and Further Diversification

Caifei Tang
Department of Chemistry, Fudan University, Shanghai 200433, P. R. of China   Fax: +86(21)65641740   Email: qrwang@fudan.edu.cn
,
Chao Wang
Department of Chemistry, Fudan University, Shanghai 200433, P. R. of China   Fax: +86(21)65641740   Email: qrwang@fudan.edu.cn
,
Zhiming Li
Department of Chemistry, Fudan University, Shanghai 200433, P. R. of China   Fax: +86(21)65641740   Email: qrwang@fudan.edu.cn
,
Quanrui Wang*
Department of Chemistry, Fudan University, Shanghai 200433, P. R. of China   Fax: +86(21)65641740   Email: qrwang@fudan.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 08 May 2014

Accepted after revision: 20 June 2014

Publication Date:
21 July 2014 (online)


Abstract

8-Bromo-7-chloro[1,2,4]triazolo[4,3-c]pyrimidines were prepared by bromine-mediated oxidative cyclization of the aldehyde-derived hydrazones. The structure of one such product was unambiguously confirmed by single-crystal X-ray analysis. While the C-5 unsubstituted 1,2,4-triazolo[4,3-c]pyrimidine chemotype is extremely susceptible to ring isomerization at ambient conditions, the C-5-substituted analogues were found to be quite stable, permitting isolation in pure form. Nevertheless, they can still be converted into the 1,2,4-triazolo[1,5-c]pyrimidines by base- or acid-promoted Dimroth rearrangement. The presence of halogen functionalities on the pyrimidine nucleus renders the products useful as versatile synthetic intermediates for the easy diversification, as evidenced by palladium-catalyzed Kumada cross-couplings and Buchwald–Hartwig amination, as well as direct aromatic substitution.

Supporting Information

 
  • References

  • 1 DeNinno MP, Wright SW, Etienne JB. Bioorg. Med. Chem. Lett. 2012; 22: 5721
  • 2 Phillips MA, Gujjar R, Malmquist NA, White J, El Mazouni F, Baldwin J, Rathod PK. J. Med. Chem. 2008; 51: 3649
  • 3 Singh R, Masuda ES, Payan DG. J. Med. Chem. 2012; 55: 3614
  • 4 For a comprehensive review, see: Fischer G. Adv. Heterocycl. Chem. 2008; 95: 143
  • 5 For a short synthesis of essramycin, see: Ugo B, Christopher JM. J. Nat. Prod. 2010; 73: 1938
  • 6 For a synthesis of essramycin and comparison of its antibacterial activity, see: Tee EH. L, Karoli T, Ramu S, Huang JX, Butler MS, Cooper MA. J. Nat. Prod. 2010; 73: 1940
    • 7a Hirabayashi A, Mukaiyama H, Kobayashi H, Shiohara H, Nakayama S, Ozawa M, Miyazawa K, Misawa K, Ohnota H, Isaji M. Bioorg. Med. Chem. 2008; 16: 7347
    • 7b Guetzoyan LJ, Spooner RA, Lord JM, Roberts LM, Clarkson GJ. Eur. J. Med. Chem. 2010; 45: 275
    • 8a Baraldi PG, Saponaro G, Tabrizi MA, Baraldi S, Romagnoli R, Moorman AR, Varani K, Borea PA, Preti D. Bioorg. Med. Chem. 2012; 20:  1046
    • 8b Baraldi PG, Saponaro G, Romagnoli R. J. Med. Chem. 2012; 55: 5380
    • 8c Federico S, Ciancetta A, Sabbadin D. J. Med. Chem. 2012; 55: 9654
    • 8d Kyoichiro I, Takamasa S. Patent EP1544200, 2005 ; Chem. Abstr. 2004, 140, 321375.
  • 9 Harris JM, Neustadt BR, Zhang H. Bioorg. Med. Chem. Lett. 2011; 21: 2497
    • 10a Nagamatsu T, Fujita T. Chem. Commun. 1999; 1461
    • 10b Shurrab NK, El-Louh AK, Al-Meghari IM. J. Chem. Res. 2013; 37: 91

      For reviews, see:
    • 11a Salas JM, Romero MA, Sanchez MP, Quiros M. Coord. Chem. Rev. 1999; 193: 1119
    • 11b Haasnoot JG. Coord. Chem. Rev. 2000; 200–202: 131

      For reviews on the synthesis of pyrimidine triazoles, see:
    • 12a Shaban MA. E, Morgaan AE. A. Adv. Heterocycl. Chem. 1999; 75: 131
    • 12b Shaban MA. E, Morgaan AE. A. Adv. Heterocycl. Chem. 1999; 75: 243

      For examples by using orthoformates, see:
    • 13a Brown DJ, Nagamatsu T. Aust. J. Chem. 1978; 31: 2505
    • 13b Rashad AE, Heikal OA, El-Nezhawy AO, Abdel-Megeid HF. M. E. Heteroat. Chem. 2005; 16: 226
  • 14 For examples by using activated acids or derivatives, see: Shawali AS, Hassaneen HM, Shurrab NK. Tetrahedron 2008; 64, 10339
  • 15 Neustadt BR, Liu H, Hao J, Greenlee WJ, Stamford AW, Foster C, Arik L, Lachowicz J, Zhang H, Bertorelli R, Fredduzzi S, Varty G, Cohen-Williams M, Ng K. Bioorg. Med. Chem. Lett. 2009; 19: 967
  • 16 Thiel OR, Achmatowicz MM, Reichelt A, Larsen RD. Angew. Chem. Int. Ed. 2010; 49: 8395 ; Angew. Chem. 2010, 122, 8573
  • 17 Bratulescu G. Synthesis 2005; 2833
  • 18 Li C, Li Z, Wang Q. Synlett 2010; 2179
  • 19 Tang C, Li Z, Wang Q. Beilstein J. Org. Chem. 2013; 9: 2629
  • 20 Tee OS, Berks CG. J. Org. Chem. 1980; 45: 830
  • 21 Fischer G. Adv. Heterocycl. Chem. 1993; 57: 81
  • 22 CCDC-966271 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif or by writing to the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk.
  • 23 Wolfe JP, Buchwald SL. Org. Synth. Coll. Vol. 10 . Wiley; New York: 2004: 423
  • 24 Murahashi SI. J. Organomet. Chem. 2002; 653: 27
  • 25 Hartung CG, Backes AC, Felber B, Missio A, Philipp A. Tetrahedron 2006; 62: 10055
  • 26 McCluskey A, Keller PA, Morgan J, Garner J. Org. Biomol. Chem. 2003; 1: 3353