Synthesis, Inhaltsverzeichnis Synthesis 2015; 47(22): 3489-3504DOI: 10.1055/s-0034-1378880 paper © Georg Thieme Verlag Stuttgart · New YorkSubstituted cis-Hydrindan-4-ones by Sequential Cycloadditions Autoren Institutsangaben Sara Steffen Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany eMail: martin.hiersemann@tu-dortmund.de Andreas Schäfer Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany eMail: martin.hiersemann@tu-dortmund.de Martin Hiersemann* Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 44227 Dortmund, Germany eMail: martin.hiersemann@tu-dortmund.de Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Abstract The synthesis of substituted cis-hydrindan-4-ones is reported. Particular emphasis was placed on the diastereoselective construction of quaternary stereogenic ring carbon atoms. An intermolecular asymmetric Al(III)-promoted (4+2)-cycloaddition served as the principal C/C-connecting tool. Opportunities for the further structural elaboration of the (4+2)-cycloadducts were explored. Key words Key wordscycloaddition - Diels–Alder reaction - Lewis acids - ring opening - Grignard reaction Volltext Referenzen References 1a Butt L, Schnabel C, Hiersemann M. Synthesis 2015; 47: 1922 1b Tymann D, Klüppel A, Hiller W, Hiersemann M. Org. Lett. 2014; 16: 4062 1c Butt L, Hiersemann M. Synthesis 2014; 46: 3110 1d Jaschinski T, Hiersemann M. Org. Lett. 2012; 14: 4114 1e Schnabel C, Sterz K, Müller H, Rehbein J, Wiese M, Hiersemann M. J. Org. Chem. 2011; 76: 512 1f Nelson B, Hiller W, Pollex A, Hiersemann M. Org. Lett. 2011; 13: 4438 1g Schnabel C, Hiersemann M. Org. Lett. 2009; 11: 2555 1h Helmboldt H, Hiersemann M. J. Org. Chem. 2009; 74: 1698 1i Helmboldt H, Köhler D, Hiersemann M. Org. Lett. 2006; 8: 1573 1j Pollex A, Hiersemann M. Org. Lett. 2005; 7: 5705 2a Rho J.-R, Lee H.-S, Sim CJ, Shin J. Tetrahedron 2002; 58: 9585 2b Jang KH, Jeon J.-e, Ryu S, Lee H.-S, Oh K.-B, Shin J. J. Nat. Prod. 2008; 71: 1701 For selected examples for intermolecular (4+2)-cycloaddition for the synthesis of cis-hydrindanes in general, see: 3a Lebold TP, Gallego GM, Marth CJ, Sarpong R. Org. Lett. 2012; 14: 2110 3b Wang C, Wang D, Gao S. Org. Lett. 2013; 15: 4402 3c Zhang Y, Danishefsky SJ. J. Am. Chem. Soc. 2010; 132: 9567 With 2-siloxy-1,3-dienes in particular, see: 3d Jung ME, Ho DG. Org. Lett. 2007; 9: 375 3e Jung ME, Guzaev M. Org. Lett. 2012; 14: 5169 3f Eagan JM, Hori M, Wu J, Kanyiva KS, Snyder SA. Angew. Chem. Int. Ed. 2015; 54: 7842 For an early report on the synthesis and Diels−Alder reactivity of 5, see: 4a Orban J, Turner JV. Tetrahedron Lett. 1983; 24: 2697 For further examples of 5 in (4+2)-cycloadditions, see: 4b Ohkata K, Lee YG, Utsumi Y, Ishimaru K, Akiba K. J. Org. Chem. 1991; 56: 5052 4c Hongo H, Iwasa K, Kabuto C, Matsuzaki H, Nakano H. J. Chem. Soc., Perkin Trans. 1 1997; 1747 5 Jung ME, Ho D, Chu HV. Org. Lett. 2005; 7: 1649 6 Henderson JR, Parvez M, Keay BA. Org. Lett. 2009; 11: 3178 7 Maugel N, Mann FM, Hillwig ML, Peters RJ, Snider BB. Org. Lett. 2010; 12: 2626 8 For the MeAlCl2-promoted exo diastereoselective (4+2)-cycloaddition between an acyclic diene and a chiral (X SiPr) N-acryloyl oxazolidinone, see: Roush WR, Limberakis C, Kunz RK, Barda DA. Org. Lett. 2002; 4: 1543 9 Waldmann has reported the Et2AlCl-promoted (4+2)-cycloaddition between tiglic aldehyde and diene 11b in toluene (−20 to 5 °C) to proceed with a diastereoselectivity of endo/exo = 84:16 (68%); the dr improved upon deployment of EtAlCl2•THF in CH2Cl2 at −78 °C to endo/exo = 99:1 (81%), see: Brohm D, Waldmann H. Tetrahedron Lett. 1998; 39: 3995 10 A completely exo diastereoselective (4+2)-cycloaddition between the diene 11b and an elaborated enone promoted by EtAlCl2 (1.5 equiv) and THF (1 equiv) in CH2Cl2 at r.t. was revealed by Danishefsky, see: Yoon T, Danishefsky SJ, de Gala S. Angew. Chem., Int. Ed. Engl. 1994; 33: 853 11 Evans DA, Chapman KT, Bisaha J. J. Am. Chem. Soc. 1988; 110: 1238 12 Brown JB, Henbest HB, Jones ER. H. J. Chem. Soc. 1950; 3634 13 Reaction of 1-cyclopentene-1-carbaldehyde with decylmagnesium bromide, see: Zhi-Min W, Xin-Hua Q, Wei-Shan Z. Tetrahedron 1990; 46: 1191 14 Emde H, Götz A, Hofmann K, Simchen G. Liebigs Ann. Chem. 1981; 1643 15 Brønsted acidic impurities triggered the decomposition of diene 5. However, complete recovery was possible after stirring a solution of 5 in CH2Cl2 and H2O (1:1) at r.t. overnight. After Kugelrohr distillation of 5, residual water was removed under fine vacuum conditions at 5 × 10−2 mbar. 16a Brummond KM, Hong S.-p. J. Org. Chem. 2004; 70: 907 16b Benzylation using 2-(benzyloxy)-3-nitropyridine according to Mukaiyama was less effective (76%), see: Nakano M, Kikuchi W, Matsuo J.-i, Mukaiyama T. Chem. Lett. 2001; 30: 424 17 Evans DA, Bartroli J, Shih TL. J. Am. Chem. Soc. 1981; 103: 2127 18 Nemoto H, Satoh A, Fukumoto K, Kabuto C. J. Org. Chem. 1995; 60: 594 19 In general, diastereoselectivities were determined by integration of diagnostic 1H NMR signals. The assignment of the relative configuration rests on the interpretation of NOESY experiments. The absolute configuration of the (4+2)-cycloaddition products is proposed based on the transition-state model depicted in Scheme 6. 20 Abad A, Agullo C, Cunat AC, de Alfonso Marzal I, Gris A, Navarro I, Ramirez de Arellano C. Tetrahedron 2007; 63: 1664 21 All attempts to remove the auxiliary from benzyl ether (–)-2a were unsuccessful. Application of DIBAL-H or LAH led to the reductive opening of the oxazolidinone and isolation of the corresponding amide. No notable conversion was obtained using various alternative reagents: LiBH4, NaBH4, NaOMe, LiOOH, MeOMgBr as well as Me(OMe)NH2Cl/AlMe3 or Me(OMe)NH2Cl/ i-PrMgCl. 22 Running the reaction in ethereal solvents or in the presence of more than 0.3 equiv of LAH or DIBAL-H led to the undesired reductive ring-opening of the auxiliary and hydroxy amide formation. 23a Brown HC, Krishnamurthy S. J. Am. Chem. Soc. 1972; 94: 7159 23b Brown CA. J. Am. Chem. Soc. 1973; 95: 4100 24 Miller AE. G, Biss JW, Schwartzman LH. J. Org. Chem. 1959; 24: 627 25a Luche JL. J. Am. Chem. Soc. 1978; 100: 2226 25b Gemal AL, Luche JL. J. Am. Chem. Soc. 1981; 103: 5454 26a Basha A, Lipton M, Weinreb SM. Tetrahedron Lett. 1977; 18: 4171 26b Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815 27a Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155 27b Dess DB, Martin JC. J. Am. Chem. Soc. 1991; 113: 7277 28 Paquette LA, Sauer DR, Cleary DG, Kinsella MA, Blackwell CM, Anderson LG. J. Am. Chem. Soc. 1992; 114: 7375 29 Furukawa J, Kawabata N, Nishimura J. Tetrahedron 1968; 24: 53 30 Kofron WG, Baclawski LM. J. Org. Chem. 1976; 41: 1879 31a Miescher K. Helv. Chim. Acta 1946; 29: 743 31b Miescher K, Kägi H. Helv. Chim. Acta 1949; 32: 761 31c Stahl E, Kaltenbach U. J. Chromatogr. 1961; 5: 351 32 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923 33 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512 Zusatzmaterial Zusatzmaterial Supporting Information (PDF) (opens in new window)