Semin Respir Crit Care Med 2014; 35(04): 418-430
DOI: 10.1055/s-0034-1382154
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Ventilatory Strategies in Severe Acute Respiratory Failure

Dean R. Hess
1   Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
2   Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
11 August 2014 (online)

Abstract

Lung-protective ventilator strategies are considered standard practice in the care of patients with the acute respiratory distress syndrome (ARDS). To minimize ventilator-induced lung injury, attention is directed at avoidance of alveolar overdistention and cyclical opening and closing. The lowest possible plateau pressure and tidal volume (VT) should be selected. A reasonable target VT in all mechanically ventilated patients is 6 mL/kg. A topic of much controversy is the optimal setting of positive end-expiratory pressure (PEEP). Results of a meta-analysis using individual patient data from three randomized controlled trials suggest that higher PEEP should be used for moderate and severe ARDS, whereas lower PEEP may be more appropriate in patients with mild ARDS. PEEP should be set to maximize alveolar recruitment while avoiding overdistention. Volume and pressure limitation during mechanical ventilation can be described in terms of stress and strain. Fraction of inspired oxygen (Fio 2) and PEEP are typically titrated to maintain arterial oxygen saturation (Spo 2) of 88 to 95% (Pao 2 55–80 mm Hg). There is currently no clear proven benefit for advanced modes.

 
  • References

  • 1 Slutsky AS. Ventilator-induced lung injury: from barotrauma to biotrauma. Respir Care 2005; 50 (5) 646-659
  • 2 Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor?. Am J Respir Crit Care Med 1998; 157 (6 Pt 1) 1721-1725
  • 3 Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 1998; 110 (6) 482-488
  • 4 Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 2006; 32 (1) 24-33
  • 5 Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 2000; 284 (1) 43-44
  • 6 Ranieri VM, Suter PM, Tortorella C , et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282 (1) 54-61
  • 7 Hess DR. Approaches to conventional mechanical ventilation of the patient with acute respiratory distress syndrome. Respir Care 2011; 56 (10) 1555-1572
  • 8 Hess DR. Noninvasive ventilation for acute respiratory failure. Respir Care 2013; 58 (6) 950-972
  • 9 Zhan Q, Sun B, Liang L , et al. Early use of noninvasive positive pressure ventilation for acute lung injury: a multicenter randomized controlled trial. Crit Care Med 2012; 40 (2) 455-460
  • 10 Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med 2003; 168 (12) 1438-1444
  • 11 Agarwal R, Handa A, Aggarwal AN, Gupta D, Behera D. Outcomes of noninvasive ventilation in acute hypoxemic respiratory failure in a respiratory intensive care unit in north India. Respir Care 2009; 54 (12) 1679-1687
  • 12 Antonelli M, Conti G, Moro ML , et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 2001; 27 (11) 1718-1728
  • 13 Antonelli M, Conti G, Esquinas A , et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 2007; 35 (1) 18-25
  • 14 Kumar A, Zarychanski R, Pinto R , et al; Canadian Critical Care Trials Group H1N1 Collaborative. Critically ill patients with 2009 influenza A(H1N1) infection in Canada. JAMA 2009; 302 (17) 1872-1879
  • 15 Agarwal R, Aggarwal AN, Gupta D. Role of noninvasive ventilation in acute lung injury/acute respiratory distress syndrome: a proportion meta-analysis. Respir Care 2010; 55 (12) 1653-1660
  • 16 Anonymous; The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 17 Needham DM, Colantuoni E, Mendez-Tellez PA , et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ 2012; 344: e2124
  • 18 Hager DN, Krishnan JA, Hayden DL, Brower RG , ARDS Clinical Trials Network. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 2005; 172 (10) 1241-1245
  • 19 Terragni PP, Rosboch G, Tealdi A , et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007; 175 (2) 160-166
  • 20 Laffey JG, O'Croinin D, McLoughlin P, Kavanagh BP. Permissive hypercapnia—role in protective lung ventilatory strategies. Intensive Care Med 2004; 30 (3) 347-356
  • 21 Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 2006; 34 (1) 1-7
  • 22 de Durante G, del Turco M, Rustichini L , et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2002; 165 (9) 1271-1274
  • 23 MacIntyre NR, Sessler CN. Are there benefits or harm from pressure targeting during lung-protective ventilation?. Respir Care 2010; 55 (2) 175-180 , discussion 180–183
  • 24 MacIntyre N. Counterpoint: Is pressure assist-control preferred over volume assist-control mode for lung protective ventilation in patients with ARDS? No. Chest 2011; 140 (2) 290-292 , discussion 292–294
  • 25 Marini JJ. Point: Is pressure assist-control preferred over volume assist-control mode for lung protective ventilation in patients with ARDS? Yes. Chest 2011; 140 (2) 286-290
  • 26 Davis Jr K, Branson RD, Campbell RS, Porembka DT. Comparison of volume control and pressure control ventilation: is flow waveform the difference?. J Trauma 1996; 41 (5) 808-814
  • 27 Fujita Y, Fujino Y, Uchiyama A, Mashimo T, Nishimura M. High peak inspiratory flow can aggravate ventilator-induced lung injury in rabbits. Med Sci Monit 2007; 13 (4) BR95-BR100
  • 28 Kotani M, Kotani T, Li Z, Silbajoris R, Piantadosi CA, Huang Y-CT. Reduced inspiratory flow attenuates IL-8 release and MAPK activation of lung overstretch. Eur Respir J 2004; 24 (2) 238-246
  • 29 Rich PB, Reickert CA, Sawada S , et al. Effect of rate and inspiratory flow on ventilator-induced lung injury. J Trauma 2000; 49 (5) 903-911
  • 30 MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med 1997; 25 (10) 1671-1677
  • 31 Yang LY, Huang YC, Macintyre NR. Patient-ventilator synchrony during pressure-targeted versus flow-targeted small tidal volume assisted ventilation. J Crit Care 2007; 22 (3) 252-257
  • 32 Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005; 50 (12) 1623-1631
  • 33 Mireles-Cabodevila E, Chatburn RL. Work of breathing in adaptive pressure control continuous mandatory ventilation. Respir Care 2009; 54 (11) 1467-1472
  • 34 Branson RD. Dual control modes, closed loop ventilation, handguns, and tequila. Respir Care 2001; 46 (3) 232-233
  • 35 Sottiaux TM. Patient-ventilator interactions during volume-support ventilation: asynchrony and tidal volume instability—a report of three cases. Respir Care 2001; 46 (3) 255-262
  • 36 Jaber S, Delay J-M, Matecki S, Sebbane M, Eledjam J-J, Brochard L. Volume-guaranteed pressure-support ventilation facing acute changes in ventilatory demand. Intensive Care Med 2005; 31 (9) 1181-1188
  • 37 Jaber S, Sebbane M, Verzilli D , et al. Adaptive support and pressure support ventilation behavior in response to increased ventilatory demand. Anesthesiology 2009; 110 (3) 620-627
  • 38 Schmidt UH, Hess DR. Does spontaneous breathing produce harm in patients with the acute respiratory distress syndrome?. Respir Care 2010; 55 (6) 784-786
  • 39 Leray V, Bourdin G, Flandreau G , et al. A case of pneumomediastinum in a patient with acute respiratory distress syndrome on pressure support ventilation. Respir Care 2010; 55 (6) 770-773
  • 40 Schmidt U, Coppadoro A, Hess DR. To breathe or not to breathe?. Crit Care Med 2012; 40 (5) 1680-1681
  • 41 Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012; 40 (5) 1578-1585
  • 42 Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 2013; 41 (2) 536-545
  • 43 Yoshida T, Torsani V, Gomes S , et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 2013; 188 (12) 1420-1427
  • 44 Cole AG, Weller SF, Sykes MK. Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 1984; 10 (5) 227-232
  • 45 Gurevitch MJ, Van Dyke J, Young ES, Jackson K. Improved oxygenation and lower peak airway pressure in severe adult respiratory distress syndrome. Treatment with inverse ratio ventilation. Chest 1986; 89 (2) 211-213
  • 46 Tharratt RS, Allen RP, Albertson TE. Pressure controlled inverse ratio ventilation in severe adult respiratory failure. Chest 1988; 94 (4) 755-762
  • 47 Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled inverse ratio ventilation in severe respiratory failure. Chest 1989; 96 (6) 1356-1359
  • 48 Lain DC, DiBenedetto R, Morris SL, Van Nguyen A, Saulters R, Causey D. Pressure control inverse ratio ventilation as a method to reduce peak inspiratory pressure and provide adequate ventilation and oxygenation. Chest 1989; 95 (5) 1081-1088
  • 49 Marcy TW, Marini JJ. Inverse ratio ventilation in ARDS. Rationale and implementation. Chest 1991; 100 (2) 494-504
  • 50 Mercat A, Graïni L, Teboul JL, Lenique F, Richard C. Cardiorespiratory effects of pressure-controlled ventilation with and without inverse ratio in the adult respiratory distress syndrome. Chest 1993; 104 (3) 871-875
  • 51 Muñoz J, Guerrero JE, Escalante JL, Palomino R, De La Calle B. Pressure-controlled ventilation versus controlled mechanical ventilation with decelerating inspiratory flow. Crit Care Med 1993; 21 (8) 1143-1148
  • 52 Lessard MR, Guérot E, Lorino H, Lemaire F, Brochard L. Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology 1994; 80 (5) 983-991
  • 53 Mercat A, Titiriga M, Anguel N, Richard C, Teboul JL. Inverse ratio ventilation (I/E = 2/1) in acute respiratory distress syndrome: a six-hour controlled study. Am J Respir Crit Care Med 1997; 155 (5) 1637-1642
  • 54 Zavala E, Ferrer M, Polese G , et al. Effect of inverse I:E ratio ventilation on pulmonary gas exchange in acute respiratory distress syndrome. Anesthesiology 1998; 88 (1) 35-42
  • 55 Shanholtz C, Brower R. Should inverse ratio ventilation be used in adult respiratory distress syndrome?. Am J Respir Crit Care Med 1994; 149 (5) 1354-1358
  • 56 Kacmarek RM, Hess D. Pressure-controlled inverse-ratio ventilation: Panacea or auto-PEEP?. Respir Care 1990; 35: 945-948
  • 57 Duncan SR, Rizk NW, Raffin TA. Inverse ratio ventilation. PEEP in disguise?. Chest 1987; 92 (3) 390-392
  • 58 Kallet RH, Siobal MS. Measuring dead space: does it really matter? or, What are we waiting for?. Respir Care 2010; 55 (3) 350-352
  • 59 Nuckton TJ, Alonso JA, Kallet RH , et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346 (17) 1281-1286
  • 60 Raurich JM, Vilar M, Colomar A , et al. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care 2010; 55 (3) 282-287
  • 61 Lucangelo U, Bernabè F, Vatua S , et al. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest 2008; 133 (1) 62-71
  • 62 Kallet RH, Alonso JA, Pittet JF, Matthay MA. Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care 2004; 49 (9) 1008-1014
  • 63 Pohlman MC, McCallister KE, Schweickert WD , et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 2008; 36 (11) 3019-3023
  • 64 Hess DR, Thompson BT. Patient-ventilator dyssynchrony during lung protective ventilation: what's a clinician to do?. Crit Care Med 2006; 34 (1) 231-233
  • 65 Ramnath VR, Hess DR, Thompson BT. Conventional mechanical ventilation in acute lung injury and acute respiratory distress syndrome. Clin Chest Med 2006; 27 (4) 601-613 , abstract viii
  • 66 Cheng IW, Eisner MD, Thompson BT, Ware LB, Matthay MA ; Acute Respiratory Distress Syndrome Network. Acute effects of tidal volume strategy on hemodynamics, fluid balance, and sedation in acute lung injury. Crit Care Med 2005; 33 (1) 63-70 , discussion 239–240
  • 67 Kahn JM, Andersson L, Karir V, Polissar NL, Neff MJ, Rubenfeld GD. Low tidal volume ventilation does not increase sedation use in patients with acute lung injury. Crit Care Med 2005; 33 (4) 766-771
  • 68 Papazian L, Forel J-M, Gacouin A , et al; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363 (12) 1107-1116
  • 69 Alhazzani W, Alshahrani M, Jaeschke R , et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care 2013; 17 (2) R43
  • 70 Lellouche F, Lipes J. Prophylactic protective ventilation: lower tidal volumes for all critically ill patients?. Intensive Care Med 2013; 39 (1) 6-15
  • 71 Litell JM, Gong MN, Talmor D, Gajic O. Acute lung injury: prevention may be the best medicine. Respir Care 2011; 56 (10) 1546-1554
  • 72 Schultz MJ, Haitsma JJ, Slutsky AS, Gajic O. What tidal volumes should be used in patients without acute lung injury?. Anesthesiology 2007; 106 (6) 1226-1231
  • 73 Determann RM, Royakkers A, Wolthuis EK , et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care 2010; 14 (1) R1
  • 74 Chaney MA, Nikolov MP, Blakeman BP, Bakhos M. Protective ventilation attenuates postoperative pulmonary dysfunction in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2000; 14 (5) 514-518
  • 75 Lellouche F, Dionne S, Simard S, Bussières J, Dagenais F. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology 2012; 116 (5) 1072-1082
  • 76 Mascia L, Pasero D, Slutsky AS , et al. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial. JAMA 2010; 304 (23) 2620-2627
  • 77 Serpa Neto A, Cardoso SO, Manetta JA , et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 2012; 308 (16) 1651-1659
  • 78 Biehl M, Kashiouris MG, Gajic O. Ventilator-induced lung injury: minimizing its impact in patients with or at risk for ARDS. Respir Care 2013; 58 (6) 927-937
  • 79 Esteban A, Anzueto A, Frutos F , et al; Mechanical Ventilation International Study Group. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 2002; 287 (3) 345-355
  • 80 Esteban A, Ferguson ND, Meade MO , et al; VENTILA Group. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med 2008; 177 (2) 170-177
  • 81 Ferguson ND, Frutos-Vivar F, Esteban A , et al; Mechanical Ventilation International Study Group. Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit Care Med 2005; 33 (1) 21-30
  • 82 Amato MB, Barbas CS, Medeiros DM , et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338 (6) 347-354
  • 83 Brower RG, Lanken PN, MacIntyre N , et al; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351 (4) 327-336
  • 84 Meade MO, Cook DJ, Guyatt GH , et al; Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (6) 637-645
  • 85 Mercat A, Richard J-CM, Vielle B , et al; Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (6) 646-655
  • 86 Talmor D, Sarge T, Malhotra A , et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359 (20) 2095-2104
  • 87 Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 2006; 34 (5) 1311-1318
  • 88 Hess DR. How much PEEP? Do we need another meta-analysis?. Respir Care 2011; 56 (5) 710-713
  • 89 Gattinoni L, Caironi P, Cressoni M , et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006; 354 (17) 1775-1786
  • 90 Caironi P, Cressoni M, Chiumello D , et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 2010; 181 (6) 578-586
  • 91 Briel M, Meade M, Mercat A , et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303 (9) 865-873
  • 92 Dasenbrook E, Needham DM, Brower RG, Fan E. Higher positive end-expiratory pressure in patients with acute lung injury: a systematic review and meta-analysis. Respir Care 2011; 56 (5) 568-575
  • 93 Oba Y, Thameem DM, Zaza T. High levels of PEEP may improve survival in acute respiratory distress syndrome: A meta-analysis. Respir Med 2009; 103 (8) 1174-1181
  • 94 Phoenix SI, Paravastu S, Columb M, Vincent J-L, Nirmalan M. Does a higher positive end expiratory pressure decrease mortality in acute respiratory distress syndrome? A systematic review and meta-analysis. Anesthesiology 2009; 110 (5) 1098-1105
  • 95 Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med 2009; 151 (8) 566-576
  • 96 Kallet RH, Branson RD. Respiratory controversies in the critical care setting. Do the NIH ARDS Clinical Trials Network PEEP/FIO2 tables provide the best evidence-based guide to balancing PEEP and FIO2 settings in adults?. Respir Care 2007; 52 (4) 461-475 , discussion 475–477
  • 97 Grasso S, Fanelli V, Cafarelli A , et al. Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005; 171 (9) 1002-1008
  • 98 Grasso S, Stripoli T, De Michele M , et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 2007; 176 (8) 761-767
  • 99 Grasso S, Stripoli T, Sacchi M , et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med 2009; 180 (5) 415-423
  • 100 Chiumello D, Cressoni M, Carlesso E , et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med 2014; 42 (2) 252-264
  • 101 Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975; 292 (6) 284-289
  • 102 Harris RS. Pressure-volume curves of the respiratory system. Respir Care 2005; 50 (1) 78-98 , discussion 98–99
  • 103 Harris RS, Hess DR, Venegas JG. An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 2000; 161 (2 Pt 1) 432-439
  • 104 Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A. Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med 1997; 156 (3 Pt 1) 846-854
  • 105 Owens RL, Hess DR, Malhotra A, Venegas JG, Harris RS. Effect of the chest wall on pressure-volume curve analysis of acute respiratory distress syndrome lungs. Crit Care Med 2008; 36 (11) 2980-2985
  • 106 Ranieri VM, Brienza N, Santostasi S , et al. Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 1997; 156 (4 Pt 1) 1082-1091
  • 107 Dall'ava-Santucci J, Armaganidis A, Brunet F , et al. Mechanical effects of PEEP in patients with adult respiratory distress syndrome. J Appl Physiol (1985) 1990; 68 (3) 843-848
  • 108 Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ ; CT Scan ARDS Study Group. Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 2000; 26 (9) 1215-1227
  • 109 Hickling KG. Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 2002; 8 (1) 32-38
  • 110 Grooms DA, Sibole SH, Tomlinson JR, Marik PE, Chatburn RL. Customization of an open-lung ventilation strategy to treat a case of life-threatening acute respiratory distress syndrome. Respir Care 2011; 56 (4) 514-519
  • 111 Grasso S, Terragni P, Mascia L , et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004; 32 (4) 1018-1027
  • 112 Terragni PP, Filippini C, Slutsky AS , et al. Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome. Anesthesiology 2013; 119 (4) 880-889
  • 113 Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes?. Am J Respir Crit Care Med 1998; 158 (1) 3-11
  • 114 Hess DR, Bigatello LM. The chest wall in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 2008; 14 (1) 94-102
  • 115 Piraino T, Cook DJ. Optimal PEEP guided by esophageal balloon manometry. Respir Care 2011; 56 (4) 510-513
  • 116 Loring SH, O'Donnell CR, Behazin N , et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress?. J Appl Physiol (1985) 2010; 108 (3) 515-522
  • 117 Talmor D, Sarge T, O'Donnell CR , et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34 (5) 1389-1394
  • 118 Talmor DS, Fessler HE. Are esophageal pressure measurements important in clinical decision-making in mechanically ventilated patients?. Respir Care 2010; 55 (2) 162-172 , discussion 172–174
  • 119 Branson RD, Johannigman JA. Innovations in mechanical ventilation. Respir Care 2009; 54 (7) 933-947
  • 120 Owens RL, Stigler WS, Hess DR. Do newer monitors of exhaled gases, mechanics, and esophageal pressure add value?. Clin Chest Med 2008; 29 (2) 297-312, vi–vii vi–vii.
  • 121 Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med 2011; 183 (3) 341-347
  • 122 Costa ELV, Borges JB, Melo A , et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 2009; 35 (6) 1132-1137
  • 123 Victorino JA, Borges JB, Okamoto VN , et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 2004; 169 (7) 791-800
  • 124 Marini JJ. Recruitment by sustained inflation: time for a change. Intensive Care Med 2011; 37 (10) 1572-1574
  • 125 Fan E, Checkley W, Stewart TE , et al. Complications from recruitment maneuvers in patients with acute lung injury: secondary analysis from the lung open ventilation study. Respir Care 2012; 57 (11) 1842-1849
  • 126 Fan E, Wilcox ME, Brower RG , et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 2008; 178 (11) 1156-1163
  • 127 Esan A, Hess DR, Raoof S, George L, Sessler CN. Severe hypoxemic respiratory failure: part 1—ventilatory strategies. Chest 2010; 137 (5) 1203-1216
  • 128 Girgis K, Hamed H, Khater Y, Kacmarek RM. A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care 2006; 51 (10) 1132-1139
  • 129 Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 2001; 163 (1) 69-78
  • 130 Rodriguez PO, Bonelli I, Setten M , et al. Transpulmonary pressure and gas exchange during decremental PEEP titration in pulmonary ARDS patients. Respir Care 2013; 58 (5) 754-763
  • 131 Piraino T. Decremental PEEP titration: a step away from the table. Respir Care 2013; 58 (5) 886-888
  • 132 Huh JW, Jung H, Choi HS, Hong S-B, Lim C-M, Koh Y. Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care 2009; 13 (1) R22
  • 133 Chiumello D, Carlesso E, Cadringher P , et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 2008; 178 (4) 346-355
  • 134 Gattinoni L, Carlesso E, Caironi P. Stress and strain within the lung. Curr Opin Crit Care 2012; 18 (1) 42-47
  • 135 Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 1970; 28 (5) 596-608
  • 136 Kallet RH, Matthay MA. Hyperoxic acute lung injury. Respir Care 2013; 58 (1) 123-141
  • 137 Rachmale S, Li G, Wilson G, Malinchoc M, Gajic O. Practice of excessive F(IO(2)) and effect on pulmonary outcomes in mechanically ventilated patients with acute lung injury. Respir Care 2012; 57 (11) 1887-1893
  • 138 Abdelsalam M, Cheifetz IM. Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care 2010; 55 (11) 1483-1490
  • 139 MacIntyre NR. Supporting oxygenation in acute respiratory failure. Respir Care 2013; 58 (1) 142-150
  • 140 Martin DS, Grocott MP. Oxygen therapy in critical illness: precise control of arterial oxygenation and permissive hypoxemia. Crit Care Med 2013; 41 (2) 423-432
  • 141 Neumann P, Golisch W, Strohmeyer A, Buscher H, Burchardi H, Sydow M. Influence of different release times on spontaneous breathing pattern during airway pressure release ventilation. Intensive Care Med 2002; 28 (12) 1742-1749
  • 142 Putensen C, Zech S, Wrigge H , et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164 (1) 43-49
  • 143 Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettilä VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand 2004; 48 (6) 722-731
  • 144 Maung AA, Schuster KM, Kaplan LJ , et al. Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients. J Trauma Acute Care Surg 2012; 73 (2) 507-510
  • 145 Maxwell RA, Green JM, Waldrop J , et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 2010; 69 (3) 501-510 , discussion 511
  • 146 Young D, Lamb SE, Shah S , et al; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 2013; 368 (9) 806-813