Horm Metab Res 2015; 47(04): 265-272
DOI: 10.1055/s-0034-1387736
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

AHNAK KO Mice are Protected from Diet-Induced Obesity but are Glucose Intolerant

M. Ramdas
1   Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, and Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
,
C. Harel
1   Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, and Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
,
M. Armoni
1   Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, and Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
,
E. Karnieli
1   Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, and Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
› Author Affiliations
Further Information

Publication History

received 22 April 2014

accepted 31 July 2014

Publication Date:
25 August 2014 (online)

Abstract

AHNAK is a 700 KD phosphoprotein primarily involved in calcium signaling in various cell types and regulating cytoskeletal organization and cell membrane architecture. AHNAK expression has also been associated with obesity. To investigate the role of AHNAK in regulating metabolic homeostasis, we studied whole body AHNAK knockout mice (KO) on either regular chow or high-fat diet (HFD). KO mice had a leaner phenotype and were resistant to high-fat diet-induced obesity (DIO), as reflected by a reduction in adipose tissue mass in conjunction with higher lean mass compared to wild-type controls (WT). However, KO mice exhibited higher fasting glucose levels, impaired glucose tolerance, and diminished serum insulin levels on either diet. Concomitantly, KO mice on HFD displayed defects in insulin signaling, as evident from reduced Akt phosphorylation and decreased cellular glucose transporter (Glut4) levels. Glucose intolerance and insulin resistance were also associated with changes in expression of genes regulating fat, glucose, and energy metabolism in adipose tissue and liver. Taken together, these data demonstrate that (a) AHNAK is involved in glucose homeostasis and weight balance (b) under normal feeding KO mice are insulin sensitive yet insulin deficient; and (c) AHNAK deletion protects against HFD-induced obesity, but not against HFD-induced insulin resistance and glucose intolerance in vivo.

Supporting Information

 
  • References

  • 1 McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne) 2013; 4: 52
  • 2 Bays HE. Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes Res 2004; 12: 1197-1211
  • 3 Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, Smith RJ, Smith RS. Obesity and type 2 diabetes: what can be unified and what needs to be individualized?. J Clin Endocrinol Metab 2011; 96: 1654-1663
  • 4 Armoni M, Harel C, Bar-Yoseph F, Milo S, Karnieli E. Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J Biol Chem 2005; 280: 34786-34795
  • 5 Shtivelman E, Bishop JM. The human gene AHNAK encodes a large phosphoprotein located primarily in the nucleus. J Cell Biol 1993; 120: 625-630
  • 6 Shtivelman E, Cohen FE, Bishop JM. A human gene (AHNAK) encoding an unusually large protein with a 1.2-microns polyionic rod structure. Proc Natl Acad Sci USA 1992; 89: 5472-5476
  • 7 Gentil BJ, Delphin C, Benaud C, Baudier J. Expression of the giant protein AHNAK (desmoyokin) in muscle and lining epithelial cells. J Histochem Cytochem 2003; 51: 339-348
  • 8 Marg A, Haase H, Neumann T, Kouno M, Morano I. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness. Biochem Biophys Res Commun 2010; 401: 143-148
  • 9 Benaud C, Gentil BJ, Assard N, Court M, Garin J, Delphin C, Baudier J. AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture. J Cell Biol 2004; 164: 133-144
  • 10 Nie Z, Ning W, Amagai M, Hashimoto T. C-Terminus of desmoyokin/AHNAK protein is responsible for its translocation between the nucleus and cytoplasm. J Invest Dermatol 2000; 114: 1044-1049
  • 11 Alvarez JL, Petzhold D, Pankonien I, Behlke J, Kouno M, Vassort G, Morano I, Haase H. Ahnak1 modulates L-type Ca(2+) channel inactivation of rodent cardiomyocytes. Pflugers Arch 2010; 460: 719-730
  • 12 Haase H. Ahnak, a new player in beta-adrenergic regulation of the cardiac L-type Ca2+ channel. Cardiovasc Res 2007; 73: 19-25
  • 13 Haase H, Podzuweit T, Lutsch G, Hohaus A, Kostka S, Lindschau C, Kott M, Kraft R, Moraqno I. Signaling from beta-adrenoceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. FASEB J 1999; 13: 2161-2172
  • 14 Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H. The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J 2002; 16: 1205-1216
  • 15 Matza D, Badou A, Jha MK, Willinger T, Antov A, Sanjabi S, Kobayashi KS, Marchesi VT, Flavell RA. Requirement for AHNAK1-mediated calcium signaling during T lymphocyte cytolysis. Proc Natl Acad Sci USA 2009; 106: 9785-9790
  • 16 Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, McMahon-Pratt D, Marches VT, Flavell RA. A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 2008; 28: 64-74
  • 17 Matza D, Flavell RA. Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast. Immunol Rev 2009; 231: 257-264
  • 18 Pankonien I, Alvarez JL, Doller A, Kohncke C, Rotte D, Regitz-Zagrosek V, Morano I, Haase H. Ahnak1 is a tuneable modulator of cardiac Ca(v)1.2 calcium channel activity. J Muscle Res Cell Motil 2011; 32: 281-290
  • 19 Sekiya F, Bae YS, Jhon DY, Hwang SC, Rhee SG. AHNAK, a protein that binds and activates phospholipase C-gamma1 in the presence of arachidonic acid. J Biol Chem 1999; 274: 13900-13907
  • 20 Alli AA, Gower Jr WR. The C type natriuretic peptide receptor tethers AHNAK1 at the plasma membrane to potentiate arachidonic acid-induced calcium mobilization. Am J Physiol 2009; 297: C1157-C1167
  • 21 Parikh H, Nilsson E, Ling C, Poulsen P, Almgren P, Nittby H, Erlksson K-F, Vaag A. Molecular correlates for maximal oxygen uptake and type 1 fibers. Am J Physiol 2008; 294: E1152-E1159
  • 22 Kim IY, Jung J, Jang M, Ahn YG, Shin JH, Choi JW, Sohn MR, Shin SM, Kang D-G, Lee H-S, Bae YS, Ryu DH, Seong JK, Hwang G-S. 1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem Biophys Res Commun 2010; 403: 428-434
  • 23 Kouno M, Kondoh G, Horie K, Komazawa N, Ishii N, Takahashi Y, Takeda J, Hashimoto T. Ahnak/Desmoyokin is dispensable for proliferation, differentiation, and maintenance of integrity in mouse epidermis. J Invest Dermatol 2004; 123: 700-707
  • 24 Hemi R, Yochananov Y, Barhod E, Kasher-Meron M, Karasik A, Tirosh A, Kanety H. p38 mitogen-activated protein kinase-dependent transactivation of ErbB receptor family: a novel common mechanism for stress-induced IRS-1 serine phosphorylation and insulin resistance. Diabetes 2011; 60: 1134-1145
  • 25 Freidenberg GR, Reichart D, Olefsky JM, Henry RR. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J Clin Invest 1988; 82: 1398-1406
  • 26 Cho H, Mu J, Kim JK, Thorvaldsen J, Chu Q, Crenshaw III EB, Kaestner KIH, Bartolmei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001; 292: 1728-1731
  • 27 Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson P-A, Smith U, Kahn BB. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Eng J Med 2006; 354: 2552-2563
  • 28 Ruan W, Lai M. Insulin-like growth factor binding protein: a possible marker for the metabolic syndrome?. Acta Diabetol 2010; 47: 5-14
  • 29 Wheatcroft SB, Kearney MT. IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends Endocrinol Metab 2009; 20: 153-162
  • 30 Bak JF, Moller N, Schmitz O, Saaek A, Pedersen O. In vivo insulin action and muscle glycogen synthase activity in type 2 (non-insulin-dependent) diabetes mellitus: effects of diet treatment. Diabetologia 1992; 35: 777-784
  • 31 Li J, Yu X, Pan W, Unger RH. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am J Physiol 2002; 282: E1334-E1341
  • 32 Zierath JR, Houseknecht KL, Gnudi L, Kahn BB. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes 1997; 46: 215-223
  • 33 Muoio DM, Koves TR. Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease. Appl Physiol Nutr Metab 2007; 32: 874-883
  • 34 Pedersen MG, Sherman A. Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proc Natl Acad Sci USA 2009; 106: 7432-7436
  • 35 Jacobson DA, Weber CR, Bao S, Turk J, Philipson LH. Modulation of the pancreatic islet beta-cell-delayed rectifier potassium channel Kv2.1 by the polyunsaturated fatty acid arachidonate. J Biol Chem 2007; 282: 7442-7449
  • 36 Ramanadham S, Gross R, Turk J. Arachidonic acid induces an increase in the cytosolic calcium concentration in single pancreatic islet beta cells. Biochem Biophys Res Commun 1992; 184: 647-653
  • 37 Sharoyko VV, Zaitseva II, Leibiger B, Efendic S, Berggren P-O, Zaitsev SV. Arachidonic acid signaling is involved in the mechanism of imidazoline-induced KATP channel-independent stimulation of insulin secretion. Cell Mol Life Sci 2007; 64: 2985-2993
  • 38 Cherrington AD.. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 1999; 48: 1198-1214
  • 39 Edgerton DS, Lautz M, Scott M, Everett CA, Stettler KM, Neal DW, Chu CA, Cherrington AD. Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest 2006; 116: 521-527
  • 40 Gutierrez-Juarez R, Pocai A, Mulas C, Ono H, Bhanot S, Monia BP, Rossetti L. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest 2006; 116: 1686-1695
  • 41 Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendiziorskis CM, Song Y, Cohen P, Friedman JM, Attie AD. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 2002; 99: 11482-11486
  • 42 Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yan Q, Wu M, Ronan J, Esau C, Murphy C, Szalkowski D, Bergeron R, Doebber T, Zhang BB. Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest 2005; 115: 1030-1038
  • 43 Austin S, St-Pierre J. PGC1alpha and mitochondrial metabolism – emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012; 125: 4963-4971
  • 44 Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Bhowmick DC, Shulman GI, Spiegelman BM. Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. Proc Natl Acad Sci USA 2012; 109: 9635-9640
  • 45 Frystyk J, Vestbo E, Skjaerbaek C, Mogensen CE, Orskov H. Free insulin-like growth factors in human obesity. Metab Clin Exp 1995; 44: 37-44
  • 46 Crossey PA, Jones JS, Miell JP. Dysregulation of the insulin/IGF binding protein-1 axis in transgenic mice is associated with hyperinsulinemia and glucose intolerance. Diabetes 2000; 49: 457-465
  • 47 Rajkumar K, Krsek M, Dheen ST, Murphy LJ. Impaired glucose homeostasis in insulin-like growth factor binding protein-1 transgenic mice. J Clin Invest 1996; 98: 1818-1825
  • 48 Rajkumar K, Modric T, Murphy LJ. Impaired adipogenesis in insulin-like growth factor binding protein-1 transgenic mice. J Endocrinol 1999; 162: 457-465
  • 49 Rajwani A, Ezzat V, Smith J, Yuldasheva NY, Duncan ER, Gage M, Cubbon RM, Kahn MB, Imrie H, Abbas A, Viswambharan H, Azziz A, Sukumar P, Vidal-Puig A, Sethi JK, Xuan S, Shah AM, Grant PJ, Porter KE, Kearny MT, Wheatcroft SB. Increasing circulating IGFBP1 levels improves insulin sensitivity, promotes nitric oxide production, lowers blood pressure, and protects against atherosclerosis. Diabetes 2012; 61: 915-924
  • 50 Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356-362