ZWR - Das Deutsche Zahnärzteblatt 2014; 123(11): 526-531
DOI: 10.1055/s-0034-1396030
Wissenschaft
Implantologie
© Georg Thieme Verlag KG Stuttgart · New York

3D-Passgenauigkeit von Stegen bei unterschiedlichen Abformmethoden

3D accuracy fit of bars at varying impressiontechniques
R.-E. Matta
1   Erlangen
,
S. Eitner
1   Erlangen
,
W. Adler
1   Erlangen
,
M. Wichmann
1   Erlangen
,
B. Bergauer
1   Erlangen
› Author Affiliations
Further Information

Publication History

Publication Date:
16 December 2014 (online)

Für den langfristigen Erfolg von Implantatversorgungen spielt die Passgenauigkeit der Suprakonstruktion eine wesentliche Rolle. Die Weiterentwicklung der CAD / CAM-Technologie ermöglicht die Fertigung von präzise sitzenden Stegen. Dabei kommt es besonders auf das möglichst exakte Übertragen der Implantatposition in ein virtuelles Modell an. Neben der Abformmethode liefert auch die Gipsmodellherstellung eine mögliche Fehlerquelle. Deshalb wurde in dieser Studie die konventionelle Polyetherabformung mit dem direkten Scannen des Abdruckmaterials verglichen.

An accurate fit of the superconstruction plays a crucial role for the long-term clinical success of dental implants. The advancements in CAD / CAM technology enabled the fabrication of accurate bars. However, as a perquisite the correct implant position has to be transferred into a virtual model. Both, impression method and plaster model fabrication have been evaluated as possible sources of error. Hence, this study compares between conventional polyether impressions and a directly scanable impression material.

 
  • Literatur

  • 1 Rashidan N et al. Accuracy of implant impressions with different impression coping types and shapes. Clin Implant Dent Relat Res 2012; 14: 218-225
  • 2 Brunski JB. Biomechanics of oral implants: future research directions. J Dent Educ 1988; 52 (12) p 775-787
  • 3 Wee AG, Aquilino SA, Schneider RL. Strategies to achieve fit in implant prosthodontics: a review of the literature. Int J Prosthodont 1999; 12: 167-178
  • 4 Karl M et al. Structural changes in ceramic veneered three-unit implant-supported restorations as a consequence of static and dynamic loading. Dent Mater 2008; 24: 464-470
  • 5 Tan KB. The clinical significance of distortion in implant prosthodontics: is there such a thing as passive fit?. Ann Acad Med Singapore 1995; 24: 138-157
  • 6 Eliasson A, Ortorp A. The accuracy of an implant impression technique using digitally coded healing abutments. Clin Implant Dent Relat Res 2012; 14 (Suppl. 01) e30-38
  • 7 Kim S et al. Displacement of implant components from impressions to definitive casts. Int J Oral Maxillofac Implants 2006; 21: 747-755
  • 8 Lee H et al. The accuracy of implant impressions: A systematic review. The Journal of Prosthetic Dentistry 2008; 100: 285-291
  • 9 Lee SJ, Macarthur RX, Gallucci GO. An evaluation of student and clinician perception of digital and conventional implant impressions. J Prosthet Dent 2013; 110: 420-423
  • 10 Karl M et al. Effect of intraoral scanning on the passivity of fit of implant-supported fixed dental prostheses. Quintessence Int 2012; 43: 555-562
  • 11 Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants Res 2013; 24: 111-115
  • 12 Takahashi T, Gunne J. Fit of implant frameworks: an in vitro comparison between two fabrication techniques. J Prosthet Dent 2003; 89: 256-260
  • 13 Pozzi A et al. Clinical Reliability of CAD / CAM Cross-Arch Zirconia Bridges on Immediately Loaded Implants Placed with Computer-Assisted / Template-Guided Surgery: A Retrospective Study with a Follow-Up between 3 and 5 Years. Clin Implant Dent Relat Res. 2013
  • 14 Abreu RT et al. Influence of material of overdenture-retaining bar with vertical misfit on three-dimensional stress distribution. J Prosthodont 2010; 19: 425-431
  • 15 Lan TH et al. Bone stress analysis of various angulations of mesiodistal implants with splinted crowns in the posterior mandible: a three-dimensional finite element study. Int J Oral Maxillofac Implants 2010; 25: 763-770
  • 16 Karl M et al. Biomechanical methods applied in dentistry: a comparative overview of photoelastic examinations, strain gauge measurements, finite element analysis and three-dimensional deformation analysis. Eur J Prosthodont Restor Dent 2009; 17: 50-57
  • 17 Gomes EA et al. Effect of passive fit absence in the prosthesis / implant / retaining screw system: a two-dimensional finite element analysis. J Craniofac Surg 2009; 20: 2000-2005
  • 18 Holst S et al. A technique for in vitro fit assessment of multi-unit screw-retained implant restorations: Application of a triple-scan protocol. J Dent Biomech 2012; 3: 1758736012452181
  • 19 Team RDC A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org 2013 R Foundation for Statistical Computing, Vienna, Austria
  • 20 Papaspyridakos P et al. Accuracy of implant casts generated with splinted and non-splinted impression techniques for edentulous patients: an optical scanning study. Clin Oral Implants Res 2012; 23: 676-681
  • 21 Ongul D et al. A comparative analysis of the accuracy of different direct impression techniques for multiple implants. Aust Dent J 2012; 57: 184-189
  • 22 Wegner K et al. Effects of implant system, impression technique, and impression material on accuracy of the working cast. Int J Oral Maxillofac Implants 2013; 28: 989-995
  • 23 Ono S et al. Optical impression method to measure three-dimensional position and orientation of dental implants using an optical tracker. Clin Oral Implants Res 2013; 24: 1117-1122
  • 24 Kwon JH et al. Accuracy of implant impressions without impression copings: A three-dimensional analysis. The Journal of Prosthetic Dentistry 2011; 105: 367-373
  • 25 Fernandez MA et al. A comparative study of the accuracy between plastic and metal impression transfer copings for implant restorations. J Prosthodont 2013; 22: 367-376
  • 26 Assif D et al. Accuracy of implant impression splinted techniques: effect of splinting material. Int J Oral Maxillofac Implants 1999; 14: 885-888
  • 27 Katsoulis J et al. In vitro precision of fit of computer-aided design and computer-aided manufacturing titanium and zirconium dioxide bars. Dent Mater 2013; 29: 945-953
  • 28 Karl M et al. Passivity of fit of CAD / CAM and copy-milled frameworks, veneered frameworks, and anatomically contoured, zirconia ceramic, implant-supported fixed prostheses. J Prosthet Dent 2012; 107: 232-238
  • 29 Holst S et al. A new triple-scan protocol for 3D fit assessment of dental restorations. Quintessence Int 2011. 42: 651–657Foong JK, Judge RB, Palamara JE, Swain MV. Fracture resistance of titanium and zirconia abutments: an in vitro study. J Prosthet Dent 2013; 109: 304-312