Semin Thromb Hemost 2015; 41(01): 016-025
DOI: 10.1055/s-0034-1398377
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Profound Endothelial Damage Predicts Impending Organ Failure and Death in Sepsis

Maria E. Johansen
1   CHIP, Department of Infectious Diseases and Rheumatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
,
Pär I. Johansson
2   Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
3   Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Denmark
,
Sisse R. Ostrowski
3   Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, Denmark
,
Morten H. Bestle
4   Department of Anesthesia and Intensive Care at Nordsjaellands Hospital, Denmark
,
Lars Hein
4   Department of Anesthesia and Intensive Care at Nordsjaellands Hospital, Denmark
,
Anne L. G. Jensen
5   Department of Anesthesia and Intensive Care at University Hospital Glostrup, Denmark
,
Peter Søe-Jensen
6   Department of Anesthesia and Intensive Care at University Hospital Herlev, Denmark
,
Mads H. Andersen
7   Department of Anesthesia and Intensive Care at University Hospital Aarhus, Denmark
,
Morten Steensen
8   Department of Anesthesia and Intensive Care at University Hospital Hvidovre, Denmark
,
Thomas Mohr
9   Department of Anesthesia and Intensive Care at University Hospital Gentofte, Denmark
,
Katrin Thormar
10   Department of Anesthesia and Intensive Care at University Hospital Bispebjerg, Denmark
,
Bettina Lundgren
11   Centre of Diagnostic Investigations, Rigshospitalet, Denmark
,
Alessandro Cozzi-Lepri
1   CHIP, Department of Infectious Diseases and Rheumatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
12   Department of Virology, Royal Free and University College Medical School London, United Kingdom
,
Jens D. Lundgren
1   CHIP, Department of Infectious Diseases and Rheumatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
,
Jens-Ulrik Jensen
1   CHIP, Department of Infectious Diseases and Rheumatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
13   Department of Clinical Microbiology at Copenhagen University Hospital Hvidovre, Denmark
› Author Affiliations
Further Information

Publication History

Publication Date:
15 January 2015 (online)

Abstract

Endothelial damage contributes to organ failure and mortality in sepsis, but the extent of the contribution remains poorly quantified. Here, we examine the association between biomarkers of superficial and profound endothelial damage (syndecan-1 and soluble thrombomodulin [sTM], respectively), organ failure, and death in sepsis. The data from a clinical trial, including critically ill patients predominantly suffering sepsis (Clinicaltrials.gov: NCT00271752) were studied. Syndecan-1 and sTM levels at the time of study enrollment were determined. The predictive ability of biomarker levels on death and organ failures during follow-up were assessed in Cox models adjusted for potential confounders including key organ dysfunction measures assessed at enrollment. Of the 1,103 included patients, 418 died. sTM levels at the time of enrollment independently predicted risk of death in adjusted models (hazard ratio [HR] [highest quartile > 14 ng/mL vs. lowest quartile < 7 ng/mL] 2.2 [95% confidence interval [CI]: 1.2–4.0], p = 0.02, respectively). Conversely, syndecan-1 levels failed to predict death (adjusted HR [> 240 vs. < 70 ng/mL] 1.0 [95% CI: 0.6–1.5], p = 0.67). sTM but not syndecan-1 levels at enrollment predicted risk of multiple organ failure during follow-up (HR [> 14 ng/mL vs. < 7 ng/mL] 3.5 [95% CI: 1.5–8.3], p = 0.005 and 2.0 [95% CI: 0.8–5.0], p = 0.1321, respectively). Profound damage to the endothelium independently predicts risk of multiple organ failure and death in septic patients. Our findings also suggest that the detrimental effect of profound endothelial damage on risk of death operates via mechanisms other than causing organ failures per se. Therefore, damage to the endothelium appears centrally involved in the pathogenesis of death in sepsis and could be a target for intervention.

Note

The members of the PASS study group are as follows: Central Coordinating Centre, J. U. Jensen, B. Lundgren, J. Grarup, M. L. Jakobsen, S. S. Reilev, M. Kofoed-Djursner, J. D. Lundgren; Regional Coordinating Centres, Hvidovre, J. Løken, M. Steensen; Gentofte, T. Mohr, K. Thornberg, K. Thormar; Hillerød, L. Hein, M. Bestle; Glostrup, D. Strange, A. Ø. Lauritsen; Herlev, H. Tousi, P. Søe-Jensen; Roskilde, N. Reiter, N. E. Drenck; Skejby, M. H. Andersen, P. Fjeldborg; Århus, K. M. Larsen; Data Management and Statistical Centre, Z. Fox, J. Kjær, D. Kristensen; Procalcitonin Analysis & Logistics Centre, J. U. Jensen, B. Lundgren, M. B. Rasmussen, C. S. V. Hallas, M. Zacho, J. Iversen, T. Leerbeck, M. Jeppesen, K. S. Hansen, K. B. Jensen; Data and Safety Monitoring Board, H. Masur (Chair), J. Chastre, H. Schønheyder, C. Pedersen; Clinical Microbiology Management, B. Lundgren, J. D. Knudsen, A. Friis-Møller, K. Schønning, A. Lester, H. Westh, G. Lisby, J. K. Møller, B. Bruun, J. J. Christensen, C. Østergaard, M. Arpi, K. Astvad, M. D. Bartels, J. Engberg, H. Fjeldsøe-Nielsen, JU. S. Jensen; PASS Site Clinical Investigators, L. Hein, T. Mohr, D. G. Strange, P. L. Petersen, A. Ø. Lauritsen, S. Hougaard, T. Mantoni, L. Nebrich, A. Bendtsen, L. H. Andersen, F. Bærentzen, A. Eversbusch, B. Bømler, R. Martusevicius, T. Nielsen. P. M. Bådstøløkken, C. Maschmann, U. Grevstad, P. Hallas, A. Lindhardt, T. Galle, K. Graeser, E. Hohwu-Christensen, P. Gregersen, H. C. Boesen, L. M. Pedersen, K. Thiesen, L. C. Hallengreen, I. Rye, J. Cordtz, K. R. Madsen, P. R. C. Kirkegaard, L. Findsen, L. H. Nielsen, D. H. Pedersen, J. H. Andersen, C. Albrechtsen, A. Jacobsen, T. Jansen, A. G. Jensen, H. H. Jørgensen, M. Vazin; L. Lipsius, K. Thornberg, J. Nielsen, K. Thormar, M. Skielboe, B. Thage,C. Thoft, M. Uldbjerg, E. Anderlo, M. Engsig, F. Hani, R. B. Jacobsen. L. Mulla, U. Skram; H. Tousi, P. Søe-Jensen, T. Waldau, T. Faber, B. Andersen, I. Gillesberg, A. Christensen, C. Hartmann, R. Albret, D. S. Dinesen, K. Gani, M. Ibsen; J. Løken, M. Steensen, J. A. Petersen, P. Carl, E. Gade, D. Solevad, C. Heiring, M. Jørgensen, K. Ekelund, A. Afshari, N. Hammer, M. Bitsch, J. S. Hansen, C. Wamberg, T. D. Clausen, R. Winkel, J. Huusom, D. L. Buck, U. Grevstad, E. Aasvang, K. Lenz, P. Mellado, H. Karacan, J. Hidestål, J. Høgagard, J. Højbjerg, J. Højlund, M. Johansen, S. Strande; M. Bestle, S. Hestad, M. Østergaard, N. Wesche, S. A. Nielsen, H. Christensen, H. Blom, C. H. Jensen, K. Nielsen, N. G. Holler, K. A. Jeppesen; M. H. Andersen, P. Fjeldborg, A. Vestergaard, O. Viborg, C. D. Rossau; N. Reiter, M. Glæemose, M. B. Wranér, C. B. Thomsen, B. Rasmussen, C. Lund-Rasmussen, B. Bech, K. Bjerregaard, L. Spliid, L. L. W. Nielsen, N. E. Drenck; K. M. Larsen, M. Goldinger, D. Illum, C. Jessen, A. Christiansen, A. Berg, T. Elkmann, J. A. K. Pedersen, M. Simonsen; H. Joensen, H. Alstrøm, C. Svane, A. Engquist.


Author Contributions


M. E. J., P. I. J., S. R. O., M. H. B., L. H., A. G. J., P. S. J., M. H. A., M. S., T. M., K. T., B. L., A. C. L., J. D. L., and J. U. J. collected the data, planned and designed experiments; M. E. J., P. I. J., S. R. O., M. H. B., A. C. L., J. D. L., and J. U. J. analyzed the data; and M. E. J., P. I. J., S. R. O., M. H. B., L. H., A. G. J., P. S. J., M. H. A., M. S., T. M., K. T., B. L., A. C. L., J. D. L., and J. U. J. contributed to the writing of the article.


Grants


This study was supported by a grant from The Lundbeck Foundation. The Lundbeck Foundation had no influence on the design or conduct of the study; collection, management, analysis, and interpretation of the data or the preparation or approval of the article.


 
  • References

  • 1 Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg 2011; 254 (2) 194-200
  • 2 Rehm M, Bruegger D, Christ F , et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 2007; 116 (17) 1896-1906
  • 3 Haywood-Watson RJ, Holcomb JB, Gonzalez EA , et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS ONE 2011; 6 (8) e23530
  • 4 Ostrowski SR, Pedersen SH, Jensen JS, Mogelvang R, Johansson PI. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines. Crit Care 2013; 17 (1) R32
  • 5 Vincent JL, Sakr Y, Sprung CL , et al; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34 (2) 344-353
  • 6 Ostrowski SR, Berg RM, Windeløv NA , et al. Coagulopathy, catecholamines, and biomarkers of endothelial damage in experimental human endotoxemia and in patients with severe sepsis: a prospective study. J Crit Care 2013; 28 (5) 586-596
  • 7 Nelson A, Berkestedt I, Schmidtchen A, Ljunggren L, Bodelsson M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 2008; 30 (6) 623-627
  • 8 Ueno H, Hirasawa H, Oda S, Shiga H, Nakanishi K, Matsuda K. Coagulation/fibrinolysis abnormality and vascular endothelial damage in the pathogenesis of thrombocytopenic multiple organ failure. Crit Care Med 2002; 30 (10) 2242-2248
  • 9 Lin SM, Wang YM, Lin HC , et al. Serum thrombomodulin level relates to the clinical course of disseminated intravascular coagulation, multiorgan dysfunction syndrome, and mortality in patients with sepsis. Crit Care Med 2008; 36 (3) 683-689
  • 10 Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T. Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure. Surg Today 1995; 25 (7) 585-590
  • 11 Henneke P, Golenbock DT. Innate immune recognition of lipopolysaccharide by endothelial cells. Crit Care Med 2002; 30 (5, Suppl): S207-S213
  • 12 Cines DB, Pollak ES, Buck CA , et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91 (10) 3527-3561
  • 13 van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res 2003; 92 (6) 592-594
  • 14 Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6: 19-48
  • 15 Yang D, Xie P, Guo S, Li H. Induction of MAPK phosphatase-1 by hypothermia inhibits TNF-alpha-induced endothelial barrier dysfunction and apoptosis. Cardiovasc Res 2010; 85 (3) 520-529
  • 16 Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 2008; 83 (3) 536-545
  • 17 Seal JB, Gewertz BL. Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg 2005; 19 (4) 572-584
  • 18 Steppan J, Hofer S, Funke B , et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 2011; 165 (1) 136-141
  • 19 Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol 2009; 22 (2) 155-162
  • 20 Chen G, Wang D, Vikramadithyan R , et al. Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 2004; 43 (17) 4971-4977
  • 21 Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A 1981; 78 (4) 2249-2252
  • 22 Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest 1985; 76 (6) 2178-2181
  • 23 Ishii H, Uchiyama H, Kazama M. Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells. Thromb Haemost 1991; 65 (5) 618-623
  • 24 Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101 (10) 3765-3777
  • 25 Jensen JU, Hein L, Lundgren B , et al; Procalcitonin And Survival Study (PASS) Group. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med 2011; 39 (9) 2048-2058
  • 26 ICH E6: Good Clinical Practice: Consolidated guideline, CPMP/ICH/135/95. Available at: http://ec.europa.eu/health/files/eudralex/vol-10/3cc1aen_en.pdf . Accessed 16 December, 2014
  • 27 Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 1992; 101 (6) 1481-1483
  • 28 Sawada K, Yamamoto H, Yago H, Suehiro S. A simple assay to detect endothelial cell injury; measurement of released thrombomodulin from cells. Exp Mol Pathol 1992; 57 (2) 116-123
  • 29 Cruz DN, Antonelli M, Fumagalli R , et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 2009; 301 (23) 2445-2452
  • 30 Patel JJ, Taneja A, Niccum D, Kumar G, Jacobs E, Nanchal R. The Association of Serum Bilirubin Levels on the Outcomes of Severe Sepsis. J Intensive Care Med 2013;
  • 31 Vincent JL, Moreno R, Takala J , et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996; 22 (7) 707-710
  • 32 Jensen JU, Heslet L, Jensen TH, Espersen K, Steffensen P, Tvede M. Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Crit Care Med 2006; 34 (10) 2596-2602
  • 33 Götte M, Joussen AM, Klein C , et al. Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Invest Ophthalmol Vis Sci 2002; 43 (4) 1135-1141
  • 34 Götte M. Syndecans in inflammation. FASEB J 2003; 17 (6) 575-591
  • 35 Boehme MW, Deng Y, Raeth U , et al. Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: in vivo and in vitro studies. Immunology 1996; 87 (1) 134-140
  • 36 Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol 2004; 14 (3) 236-241
  • 37 Dohi Y, Ohashi M, Sugiyama M, Takase H, Sato K, Ueda R. Circulating thrombomodulin levels are related to latent progression of atherosclerosis in hypertensive patients. Hypertens Res 2003; 26 (6) 479-483
  • 38 Russell JA, Singer J, Bernard GR , et al. Changing pattern of organ dysfunction in early human sepsis is related to mortality. Crit Care Med 2000; 28 (10) 3405-3411
  • 39 De Backer D, Donadello K, Sakr Y , et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013; 41 (3) 791-799
  • 40 Roskams T, Moshage H, De Vos R, Guido D, Yap P, Desmet V. Heparan sulfate proteoglycan expression in normal human liver. Hepatology 1995; 21 (4) 950-958
  • 41 Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol 2006; 290 (1) F111-F116
  • 42 Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 2007; 18 (11) 2885-2893
  • 43 Seigneur M, Dufourcq P, Conri C , et al. Levels of plasma thrombomodulin are increased in atheromatous arterial disease. Thromb Res 1993; 71 (6) 423-431
  • 44 Marechal X, Favory R, Joulin O , et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 2008; 29 (5) 572-576
  • 45 Amaral AC. Polymyxin B hemoperfusion and mortality in abdominal septic shock. JAMA 2009; 302 (18) 1968-1969 , author reply 1969–1970