Ultraschall Med 2015; 36(02): 168-173
DOI: 10.1055/s-0034-1398835
Rapid Communication
© Georg Thieme Verlag KG Stuttgart · New York

Evaluating Post-Interventional Occlusion Grades of Cerebral Aneurysms with Transcranial Contrast-Enhanced Ultrasound (CEUS) Using a Matrix Probe

Postinterventionelle Beurteilung des Okklusionsgrades zerebraler Aneurysmen mittels transkraniellem Kontrast-verstärktem Ultraschall (CEUS) und Matrixsonde
C. M. Wendl
1   Department of Radiology, University Hospital Regensburg, Germany
,
J. Eiglsperger
2   Department of Physics, University of Regensburg, Germany
,
G. Schuierer
3   Institute of Neuroradiology, Center of Neuroradiology, University Hospital Regensburg, Germany
,
E. M. Jung
1   Department of Radiology, University Hospital Regensburg, Germany
› Author Affiliations
Further Information

Publication History

02 May 2014

10 December 2014

Publication Date:
21 January 2015 (online)

Abstract

Purpose: The main goal of cerebral endovascular aneurysm therapy is the complete occlusion of the aneurysm. Along with the development of new aneurysm treatment devices, repeated controls are necessary. We examined whether contrast-enhanced ultrasound can help to monitor aneurysms after endovascular treatment.

Materials and Methods: We prospectively examined 12 patients after coiling (7 patients) or flow diverter (FD) implantation (5 patients). These patients were examined with transcranial contrast-enhanced ultrasound using a matrix probe (1 – 5 MHz). Doppler sonography, Power Doppler, contrast harmonic imaging (CHI) and Power Doppler sonography (CPD) were included in the examination. Digital subtraction angiography with 3 D reconstructions served as the gold standard. Two radiologists decided in consensus about the degree of aneurysm occlusion separately in CEUS and digital subtraction angiography using a 4-point grading scheme.

Results: The degree of occlusion of the 12 aneurysms comparing the two imaging modalities was identical in 10 cases. In two cases CHI and CPD showed a small aneurysm remnant after coiling in the center of the coil pack while in digital subtraction angiography the aneurysms seemed completely occluded.

Conclusion: The investigation indicates that contrast-enhanced ultrasound is a supportive, noninvasive method for post-interventional controls of intracranial aneurysms due to its ability to display not only macro- but also microvascularization.

Zusammenfassung

Ziel: Ziel der interventionellen Therapie zerebraler Aneurysmen ist ein kompletter Verschluss, wobei neue endovaskuläre Behandlungsmethoden wiederholte postinterventionelle Kontrollen erfordern. Wir untersuchten daher, ob eine Verlaufsbeurteilung von endovaskulär versorgten zerebralen Aneurysmen mittels Kontrast-verstärktem transkraniellem Ultraschall (CEUS) möglich ist.

Material und Methoden: Wir führten prospektiv bei 12 Patienten einen transkraniellen, Kontrast-verstärkten Ultraschall inklusive Doppler, Power Doppler, Contrast Harmonic Imaging und Kontrast-verstärktem Power Doppler nach Coiling (7 Patienten) oder Flow Diverter Implantation (5 Patienten) mit einer Matrixsonde (1 – 5 MHz) durch. Goldstandard war die digitale Subtraktionsangiographie (DSA) inklusive der 3D-Rekonstruktion. Zwei Radiologen bewerteten im Konsensusverfahren den Verschlussgrad der Aneurysmen in der DSA sowie dem Ultraschall anhand einer 4-Grad-Einteilung.

Ergebnisse: Eine Übereinstimmung von Ultraschall und Angiographie bestand in 10 Fällen. Bei zwei Aneurysmen konnte nach Coiling in CEUS ein geringer Restfluss im Aneurysma detektiert werden, wohingegen in der Angiographie die Aneurysmen als verschlossen bewertet wurden.

Schlussfolgerung: Die Ergebnisse deuten darauf hin, dass CEUS aufgrund seiner Fähigkeit zur Darstellung sowohl der Makro- als auch der Mikrovaskularisation ein hilfreiches, nicht-invasives Verfahren zur wiederholten Kontrolle endovaskulär versorgter intrakranieller Aneurysmen ist.

 
  • References

  • 1 Menghini VV, Brown Jr RD , Sicks JD et al. Incidence and prevalence of intracranial aneurysms and hemorrhage in Olmsted County, Minnesota, 1965 to 1995. Neurology 1998; 512: 405-411
  • 2 Raymond J, White PM, Molyneux AJ. Scales, agreement, outcome measures, and progress in aneurysm therapy. AJNR Am J Neuroradiol 2007; 283: 501-502
  • 3 Wermer MJH, van der Schaaf IC, Algra A et al. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke J Cereb Circ 2007; 384: 1404-1410
  • 4 Steiner T, Juvela S, Unterberg A et al. European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis Basel Switz 2013; 352: 93-112
  • 5 Van Gijn J, Kerr RS, Rinkel GJE. Subarachnoid haemorrhage. Lancet 2007; 3699558: 306-318
  • 6 Feuerberg I, Lindquist C, Lindqvist M et al. Natural history of postoperative aneurysm rests. J Neurosurg 1987; 661: 30-34
  • 7 Hope JK, Byrne JV, Molyneux AJ. Factors influencing successful angiographic occlusion of aneurysms treated by coil embolization. AJNR Am J Neuroradiol 1999; 203: 391-399
  • 8 Molyneux A, Kerr R, Stratton I et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 2002; 3609342: 1267-1274
  • 9 Thornton J, Debrun GM, Aletich VA et al. Follow-up angiography of intracranial aneurysms treated with endovascular placement of Guglielmi detachable coils. Neurosurgery 2002; 502: 239-249 ; discussion 249–250
  • 10 Schaafsma JD, Velthuis BK, van den Berg R et al. Coil-treated aneurysms: decision making regarding additional treatment based on findings of MR angiography and intraarterial DSA. Radiology 2012; 2653: 858-863
  • 11 Kwee TC, Kwee RM. MR angiography in the follow-up of intracranial aneurysms treated with Guglielmi detachable coils: systematic review and meta-analysis. Neuroradiology 2007; 499: 703-713
  • 12 Ferré JC, Carsin-Nicol B, Morandi X et al. Time-of-flight MR angiography at 3T versus digital subtraction angiography in the imaging follow-up of 51 intracranial aneurysms treated with coils. Eur J Radiol 2009; 723: 365-369
  • 13 Kulcsár Z, Houdart E, Bonafé A et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol 2011; 321: 20-25
  • 14 Lubicz B, Collignon L, Raphaeli G et al. Flow-diverter stent for the endovascular treatment of intracranial aneurysms: a prospective study in 29 patients with 34 aneurysms. Stroke J Cereb Circ 2010; 4110: 2247-2253
  • 15 Fiorella D, Hsu D, Woo HH et al. Very late thrombosis of a pipeline embolization device construct: case report. Neurosurgery 2010; 67 (3 Suppl Operative): onsE313-4; discussion onsE314.
  • 16 Karacozoff AM, Shellock FG, Wakhloo AK. A next-generation, flow-diverting implant used to treat brain aneurysms: in vitro evaluation of magnetic field interactions, heating and artifacts at 3-T. Magn Reson Imaging 2013; 311: 145-149
  • 17 Henkes H, Fischer S, Liebig T et al. Repeated endovascular coil occlusion in 350 of 2759 intracranial aneurysms: safety and effectiveness aspects. Neurosurgery 2008; 626 (Suppl. 03) 1532-1537
  • 18 Ferns SP, Sprengers MES, van Rooij WJ et al. Coiling of intracranial aneurysms: a systematic review on initial occlusion and reopening and retreatment rates. Stroke J Cereb Circ 2009; 408: e523-e529
  • 19 Cognard C, Weill A, Spelle L et al. Long-term angiographic follow-up of 169 intracranial berry aneurysms occluded with detachable coils. Radiology 1999; 2122: 348-356
  • 20 Turner CL, Higgins JNP, Gholkar A et al. Intracranial aneurysms treated with endovascular coils: detection of recurrences using unenhanced and contrast-enhanced transcranial color-coded duplex sonography. Stroke J Cereb Circ 2005; 3612: 2654-2659
  • 21 Bankier AA, Levine D, Halpern EF et al. Consensus interpretation in imaging research: is there a better way?. Radiology 2010; 2571: 14-17
  • 22 Averkiou M, Powers J, Skyba D et al. Ultrasound contrast imaging research. Ultrasound Q 2003; 191: 27-37
  • 23 Pohl C, Tiemann K, Schlosser T et al. Stimulated acoustic emission detected by transcranial color doppler ultrasound : a contrast-specific phenomenon useful for the detection of cerebral tissue perfusion. Stroke J. Cereb. Circ 2000; 317: 1661-1666
  • 24 Eden A. Transcranial Doppler ultrasonography and hyperostosis of the skull. Stroke J Cereb Circ 1988; 1911: 1445-1446
  • 25 Piscaglia F, Nolsøe C, Dietrich CF et al. he EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 2012; 33: 33-59