Informationen aus Orthodontie & Kieferorthopädie 2015; 47(01): 29-46
DOI: 10.1055/s-0035-1548836
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

Effektivität nicht-konventioneller Verfahren zur Beschleunigung von Zahnbewegungen: Systematische Übersicht und Metaanalyse [*]

Effectiveness of Non-Conventional Methods for Accelerated Orthodontic Tooth Movement: A Systematic Review and Meta-Analysis
N. Gkantidis
1   Klinik für Kieferorthopädie, Universität Bern, Schweiz
,
I. Mistakidis
2   Department of Orthodontics, School of Health Sciences, Faculty of Dentistry, Aristotle University of Thessaloniki, Greece
,
T. Kouskoura
1   Klinik für Kieferorthopädie, Universität Bern, Schweiz
,
N. Pandis
1   Klinik für Kieferorthopädie, Universität Bern, Schweiz
› Author Affiliations
Further Information

Publication History

Publication Date:
18 May 2015 (online)

Zusammenfassung

Zielsetzung: Untersuchung der vorliegenden Evidenz zur Wirksamkeit chirurgischer und nicht chirurgischer Verfahren zur Beschleunigung der kieferorthopädischen Bewegung von Zähnen.

Methoden: Mithilfe von elektronischer Datenbank- und Handsuche wurden randomisierte kontrollierte Studien und kontrollierte klinische Untersuchungen zum Thema zusammengestellt (Letzte Aktualisierung: März 2014). Kieferorthopädisch-chirurgische Verfahren, Distraktionsosteoneogenese und pharmakologische Verfahren wurden dabei nicht berücksichtigt. Das Biasrisiko wurde mithilfe des „Cochrane Risk of Bias Tools“ beurteilt.

Ergebnisse: Für die qualitative und die quantitative Synthese standen 18 Studien an insgesamt 354 Patienten zur Verfügung. 8 davon hatten die Laser-Phototherapie zum Thema, eine die Fotobiomodulation, eine die Magnetfeldimpulstherapie, 7 die Kortikotomieverfahren und eine die interseptale Reduktion von Knochen. 2 der Untersuchungen zu Kortikotomieverfahren und 2 Studien zur Laser-Phototherapie, die mit geringem oder unklarem Biasrisiko behaftet waren, konnten mithilfe des Random-Effect-Modells mathematisch zusammengefasst werden. Während des ersten Therapiemonats war evident, dass sich die Retraktionsrate von Eckzähnen nach einer Kortikotomie erhöht hatte (WMD=0,73; 95% CI: 0,28, 1,19; p<0,01). Unter dem Einfluss der Laser-Phototherapie war die Retraktionsrate länger als 3 Monate erhöht (WMD=0,42 mm/Monat; 95% CI: 0,26, 0,57; p<0,001). Die Qualität der Evidenz liegt bei der Laser-Phototherapie im mittleren Bereich und ist bei den Kortikotomieverfahren gering.

Es besteht eine gewisse Evidenz dafür, dass die Laser-Phototherapie und die Kortikotomieverfahren effektiv wirken. Für die interseptale Knochenreduktion ist die Evidenz dagegen schwach und für die Fotobiomodulation sowie die Magnetfeldimpulstherapie sogar sehr schwach. Unsere Ergebnisse sollten aufgrund der geringen Anzahl, der Qualität und der Heterogenität der ausgewerteten Studien generell mit der notwendigen Vorsicht interpretiert werden. Im Zusammenhang mit der Beschleunigung der kieferorthopädischen Bewegung von Zähnen sind weitere Untersuchungen notwendig, die sich für die einzelnen Arten der Intervention besonders mit Fragen der Therapieprotokolle, der gesamten Dauer einer Behandlung und der Kosten-Nutzen-Analyse beschäftigen sollten.

Praktische Bedeutung: Aufgrund der qualitativen und quantitativen Synthese der ausgewerteten Studien lässt sich schließen, dass eine gewisse Evidenz dafür vorhanden ist, dass es im Zusammenhang mit der Laser-Phototherapie und den Kortikotomieverfahren zu einer Beschleunigung der kieferorthopädischen Bewegung von Zähnen kommt. Vor dem Einsatz dieser Verfahren in der allgemeinen kieferorthopädischen Praxis sind jedoch weitere Studien notwendig.

Abstract

Objectives: To assess the available evidence on the effectiveness of accelerated orthodontic tooth movement through surgical and non-surgical approaches in orthodontic patients.

Methods: Randomized controlled trials and controlled clinical trials were identified through electronic and hand searches (last update: March 2014). Orthognathic surgery, distraction osteogenesis, and pharmacological approaches were excluded. Risk of bias was assessed using the Cochrane risk of bias tool.

Results: 18 trials involving 354 participants were included for qualitative and quantitative synthesis. 8 trials reported on low-intensity laser, 1 on photobiomodulation, 1 on pulsed electromagnetic fields, 7 on corticotomy, and 1 on interseptal bone reduction. 2 studies on corticotomy and 2 on low-intensity laser, which had low or unclear risk of bias, were mathematically combined using the random effects model. Higher canine retraction rate was evident with corticotomy during the first month of therapy (WMD=0.73; 95% CI: 0.28, 1.19, p<0.01) and with low-intensity laser (WMD=0.42 mm/month; 95% CI: 0.26, 0.57, p<0.001) in a period longer than 3 months. The quality of evidence supporting the interventions is moderate for laser therapy and low for corticotomy intervention.

Conclusions: There is some evidence that low laser therapy and corticotomy are effective, whereas the evidence is weak for interseptal bone reduction and very weak for photo-biomodulation and pulsed electromagnetic fields. Overall, the results should be interpreted with caution given the small number, quality, and heterogeneity of the included studies. Further research is required in this field with additional attention to application protocols, adverse effects, and cost-benefit analysis.

Clinical significance: From the qualitative and quantitative synthesis of the studies, it could be concluded that there is some evidence that low laser therapy and corticotomy are associated with accelerated orthodontic tooth movement, while further investigation is required before routine application.

* Dieser Artikel ist im englischen Original erschienen in: Journal of Dentistry 42 (2014) 1300-1319. Der Abdruck erfolgt mit freundlicher Genehmigung.


 
  • Literatur

  • 1 Rosvall MD, Fields HW, Ziuchkovski J et al. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofacial Orthop 2009; 135: 276.e1-276.e12 discussion 276–277
  • 2 Segal GR, Schiffman PH, Tuncay OC. Meta analysis of the treatment-related factors of external apical root resorption. Orthod Craniofac Res 2004; 7: 71-78
  • 3 Mavreas D, Athanasiou AE. Factors affecting the duration of orthodontic treatment: a systematic review. Eur J Orthod 2008; 30: 386-395
  • 4 Fisher MA, Wenger RM, Hans MG. Pretreatment characteristics associated with orthodontic treatment duration. Am J Orthod Dentofacial Orthop 2010; 137: 178-186
  • 5 Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 2009; 88: 597-608
  • 6 Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res 2009; 12: 113-119
  • 7 Uzuner FD, Darendeliler N. Dentoalveolar surgery techniques combined with orthodontic treatment: a literature review. Eur J Dent 2013; 7: 257-265
  • 8 Murphy NC, Bissada NF, Davidovitch Z et al. Corticotomy and tissue engineering for orthodontists: a critical history and commentary. Semin Orthod 2012; 18: 295-307
  • 9 Alikhani M, Raptis M, Zoldan B et al. Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofacial Orthop 2013; 144: 639-648
  • 10 Wilcko WM, Wilcko T, Bouquot JE et al. Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent 2001; 21: 9-19
  • 11 Baloul SS, Gerstenfeld LC, Morgan EF et al. Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthop Dentofacial Orthop 2011; 139 (4 Suppl) S83-S101
  • 12 Kim SJ, Park YG, Kang SG. Effects of corticision on paradental remodeling in orthodontic tooth movement. Angle Orthod 2009; 79: 284-291
  • 13 Cruz DR, Kohara EK, Ribeiro MS et al. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 2004; 35: 117-120
  • 14 Nishimura M, Chiba M, Ohashi T et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthop Dentofacial Orthop 2008; 133: 572-583
  • 15 Showkatbakhsh R, Jamilian A, Showkatbakhsh M. The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod 2010; 11: e52-e56
  • 16 Davidovitch Z, Finkelson MD, Steigman S et al. Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod 1980; 77: 33-47
  • 17 McGorray SP, Dolce C, Kramer S et al. A randomized, placebo-controlled clinical trial on the effects of recombinant human relaxin on tooth movement and short-term stability. Am J Orthop Dentofacial Orthop 2012; 141: 196-203
  • 18 Fujita S, Yamaguchi M, Utsunomiya T et al. Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthod Craniofac Res 2008; 11: 143-155
  • 19 Long H, Pyakurel U, Wang Y et al. Interventions for accelerating orthodontic tooth movement: a systematic review. Angle Orthod 2013; 83: 164-171
  • 20 Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62: e1-e34
  • 21 Moher D, Liberati A, Tetzlaff J et al PRISMA Group . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006-1012
  • 22 Higgins JP, Altman DG, Gotzsche PC et al Cochrane Bias Methods Group; Cochrane Statistical Methods Group . The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928
  • 23 Higgins JP, Thompson SG, Deeks JJ et al. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560
  • 24 Pandis N, Fleming PS, Spineli LM et al. Initial orthodontic alignment effectiveness with self-ligating and conventional appliances: a network meta-analysis in practice. Am J Orthop Dentofacial Orthop 2014; 145: S152-S163
  • 25 Guyatt GH, Thorlund K, Oxman AD et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol 2013; 66: 173-183
  • 26 Camacho AD, Cujar SA. Acceleration effect of orthodontic movement by application of low-intensity laser. J Oral Laser Applic 2010; 10: 99-105
  • 27 Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthop Dentofacial Orthop 2012; 14: 289-297
  • 28 Genc G, Kocadereli I, Tasar F et al. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med Sci 2013; 28: 41-47
  • 29 Limpanichkul W, Godfrey K, Srisuk N et al. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res 2006; 9: 38-43
  • 30 Sousa MV, Scanavini MA, Sannomiya EK et al. Influence of low-level laser on the speed of orthodontic movement. Photomed Laser Surg 2011; 29: 191-196
  • 31 Youssef M, Ashkar S, Hamade E et al. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 2008; 23: 27-33
  • 32 Dominguez A, Gómez C, Palma JC. Effects of low-level laser therapy on orthodontics: rate of tooth movement, pain, and release of RANKL and OPG in GCF. Lasers Med Sci 2013; 30: 915-923
  • 33 Aboul-Ela SM, El-Beialy AR, El-Sayed KM et al. Miniscrew implant-supported maxillary canine retraction with and without corticotomy-facilitated orthodontics. Am J Orthop Dentofacial Orthop 2011; 139: 252-259
  • 34 Cassetta M, Di Carlo S, Giansanti M et al. The impact of osteotomy technique for corticotomy-assisted orthodontic treatment (CAOT) on oral health-related quality of life. Eur Rev Med Pharmacol Sci 2012; 16: 1735-1740
  • 35 Fischer TJ. Orthodontic treatment acceleration with corticotomy-assisted exposure of palatally impacted canines. Angle Orthod 2007; 77: 417-420
  • 36 Abed SS, Al-Bustani AI. Corticotomy assisted orthodontic canine retraction. J Baghdad College Dent 2013; 25: 160-166
  • 37 Shoreibah EA, Ibrahim SA, Attia MS et al. Clinical and radiographic evaluation of bone grafting in corticotomy-facilitated orthodontics in adults. J Int Acad Periodontol 2012; 14: 105-113
  • 38 Shoreibah EA, Salama AE, Attia MS et al. Corticotomy-facilitated orthodontics in adults using a further modified technique. J Int Acad Periodontol 2012; 14: 97-104
  • 39 Leethanakul C, Kanokkulchai S, Pongpanich S et al. Interseptal bone reduction on the rate of maxillary canine retraction. Angle Orthod 2014; 84: 839-845
  • 40 Kau CH, Kantarci A, Shaughnessy T et al. Photobiomodulation accelerates orthodontic alignment in the early phase of treatment. Prog Orthod 2013; 14: 30
  • 41 Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMedJ 2011; 342: d549
  • 42 Yamasaki K, Shibata Y, Imai S et al. Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement. Am J Orthod 1984; 85: 508-518
  • 43 Spielmann T, Wieslander L, Hefti AF. Acceleration of orthodontically induced tooth movement through the local application of prostaglandin (PGE1). Schweiz Monatsschr Zahnmed 1989; 99: 162-165
  • 44 Patil AK, Keluskar KM, Gaitonde SD. The clinical application of prostaglandin E1 on orthodontic tooth movement – a clinical trial. J Indian Orthod Soc 2005; 38: 91-98
  • 45 Bartzela T, Türp JC, Motschall E et al. Medication effects on the rate of orthodontic tooth movement: a systematic literature review. Am J Orthop Dentofacial Orthop 2009; 135: 16-26
  • 46 Kale S, Kocadereli I, Atilla P et al. Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement. Am J Orthop Dentofacial Orthop 2004; 125: 607-614
  • 47 Kumar PS, Saxena R, Patil S et al. Clinical investigation of periodontal ligament distraction osteogenesis for rapid orthodontic canine retraction. Aust Orthod J 2009; 25: 147-152
  • 48 Işeri H, Kişnişci R, Bzizi N et al. Rapid canine retraction and orthodontic treatment with dentoalveolar distraction osteogenesis. Am J Orthop Dentofacial Orthop 2005; 127: 533-541
  • 49 Kharkar VR, Kotrashetti SM, Kulkarni P. Comparative evaluation of dento-alveolar distraction and periodontal distraction assisted rapid retraction of the maxillary canine: a pilot study. Int J Oral Maxillofac Surg 2010; 39: 1074-1079
  • 50 Marini I, Bartolucci ML, Bortolotti F et al. The effect of diode superpulsed low-level laser therapy on experimental orthodontic pain caused by elastomeric separators: a randomized controlled clinical trial. Lasers Med Sci 2013; 30: 35-41
  • 51 He WL, Li CJ, Liu ZP et al. Efficacy of low-level laser therapy in the management of orthodontic pain: a systematic review and meta-analysis. Lasers Med Sci 2013; 28: 1581-1589
  • 52 Kim WT, Bayome M, Park JB et al. Effect of frequent laser irradiation on orthodontic pain. A single-blind randomized clinical trial. Angle Orthod 2013; 83: 611-616