J Knee Surg 2016; 29(03): 260-266
DOI: 10.1055/s-0035-1554926
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Anterior Cruciate Ligament Graft Isometry Is Affected by the Orientation of the Femoral Tunnel

Gregg M. Ebersole
1   Department of Orthopaedic Surgery, Saint Louis University, Saint Louis, Missouri
,
Paul Eckerle
1   Department of Orthopaedic Surgery, Saint Louis University, Saint Louis, Missouri
,
Lutul D. Farrow
2   Department of Orthopaedic and Rheumatologic Institute, Cleveland Clinic Foundation, Cleveland, Ohio
,
Adnan Cutuk
1   Department of Orthopaedic Surgery, Saint Louis University, Saint Louis, Missouri
,
Gary Bledsoe
3   Parks College of Engineering, Aviation and Technology, Saint Louis University, Saint Louis, Missouri
,
Scott Kaar
1   Department of Orthopaedic Surgery, Saint Louis University, Saint Louis, Missouri
› Author Affiliations
Further Information

Publication History

16 June 2014

31 March 2015

Publication Date:
17 July 2015 (online)

Abstract

Purpose The purpose of this study was to compare anterior cruciate ligament (ACL) graft length and tension throughout knee range of motion with transtibial, anteromedial (AM) portal, and all-epiphyseal drilling techniques with suspensory and apical femoral fixation.

Methods The three different femoral tunnel drilling techniques using the same intra-articular starting point within the center of the femoral footprint were performed on fresh-frozen cadaveric specimens. All groups underwent standard tibial drilling in the center of the ACL tibial footprint. FiberWire (Arthrex Inc., Naples, FL) was used to simulate anatomic single bundle reconstructions. Changes in graft length and tension were measured at knee flexion angles of 0, 30, 60, 90, 120, and 135 degrees.

Results Graft length and tension decreased from 0 through 60 degrees and subsequently increased from 90 to 135 degrees for all groups. The transtibial, AM portal suspensory, and apical fixation groups were similar. However, the all-epiphyseal tunnel with suspensory fixation had a significantly increased change in length (90, 120, and 135 degrees) and tension (120 and 135 degrees).

Conclusion Transtibial and AM portal suspensory fixation and apical fixation demonstrate similar changes in length and tension throughout knee range of motion. The all-epiphyseal tunnel with suspensory fixation was associated with greater length and tension changes at higher degrees of knee flexion. All techniques demonstrated decreased graft length and tension with knee flexion to 60 degrees after which they increased with further knee flexion.

Clinical Relevance ACL graft length and tension change throughout knee range of motion and also depend on femoral tunnel orientation and fixation type. The use of an all-epiphyseal tunnel with suspensory fixation should be studied further for evidence of graft elongation.

 
  • References

  • 1 Garofalo R, Moretti B, Kombot C, Moretti L, Mouhsine E. Femoral tunnel placement in anterior cruciate ligament reconstruction: rationale of the two incision technique. J Orthop Surg 2007; 2: 10
  • 2 Sadoghi P, Kröpfl A, Jansson V, Müller PE, Pietschmann MF, Fischmeister MF. Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Arthroscopy 2011; 27 (3) 355-364
  • 3 Iriuchishima T, Horaguchi T, Kubomura T, Morimoto Y, Fu FH. Evaluation of the intercondylar roof impingement after anatomical double-bundle anterior cruciate ligament reconstruction using 3D-CT. Knee Surg Sports Traumatol Arthrosc 2011; 19 (4) 674-679
  • 4 Marchant BG, Noyes FR, Barber-Westin SD, Fleckenstein C. Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions. Am J Sports Med 2010; 38 (10) 1987-1996
  • 5 Hosseini A, Lodhia P, Van de Velde SK , et al. Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis. Int Orthop 2012; 36 (4) 845-852
  • 6 Kopf S, Forsythe B, Wong AK , et al. Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am 2010; 92 (6) 1427-1431
  • 7 Zavras TD, Race A, Amis AA. The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension patterns and restoration of normal anterior-posterior laxity patterns. Knee Surg Sports Traumatol Arthrosc 2005; 13 (2) 92-100
  • 8 Andersen HN, Amis AA. Review on tension in the natural and reconstructed anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 1994; 2 (4) 192-202
  • 9 O'Meara PM, O'Brien WR, Henning CE. Anterior cruciate ligament reconstruction stability with continuous passive motion. The role of isometric graft placement. Clin Orthop Relat Res 1992; (277) 201-209
  • 10 Driscoll MD, Isabell Jr GP, Conditt MA , et al. Comparison of 2 femoral tunnel locations in anatomic single-bundle anterior cruciate ligament reconstruction: a biomechanical study. Arthroscopy 2012; 28 (10) 1481-1489
  • 11 Markolf KL, Hame S, Hunter DM , et al. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res 2002; 20 (5) 1016-1024
  • 12 Musahl V, Plakseychuk A, VanScyoc A , et al. Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 2005; 33 (5) 712-718
  • 13 Kato Y, Maeyama A, Lertwanich P , et al. Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2013; 21 (4) 816-823
  • 14 Duquin TR, Wind WM, Fineberg MS, Smolinski RJ, Buyea CM. Current trends in anterior cruciate ligament reconstruction. J Knee Surg 2009; 22 (1) 7-12
  • 15 Arnold MP, Kooloos J, van Kampen A. Single-incision technique misses the anatomical femoral anterior cruciate ligament insertion: a cadaver study. Knee Surg Sports Traumatol Arthrosc 2001; 9 (4) 194-199
  • 16 Siegel L, Vandenakker-Albanese C, Siegel D. Anterior cruciate ligament injuries: anatomy, physiology, biomechanics, and management. Clin J Sport Med 2012; 22 (4) 349-355
  • 17 Bedi A, Musahl V, Steuber V , et al. Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 2011; 27 (3) 380-390
  • 18 Larson AI, Bullock DP, Pevny T. Comparison of 4 femoral tunnel drilling techniques in anterior cruciate ligament reconstruction. Arthroscopy 2012; 28 (7) 972-979
  • 19 Kaeding CC, Flanigan D, Donaldson C. Surgical techniques and outcomes after anterior cruciate ligament reconstruction in preadolescent patients. Arthroscopy 2010; 26 (11) 1530-1538
  • 20 Nikolaou P, Kalliakmanis A, Bousgas D, Zourntos S. Intraarticular stabilization following anterior cruciate ligament injury in children and adolescents. Knee Surg Sports Traumatol Arthrosc 2011; 19 (5) 801-805
  • 21 Sim JA, Gadikota HR, Li JS, Li G, Gill TJ. Biomechanical evaluation of knee joint laxities and graft forces after anterior cruciate ligament reconstruction by anteromedial portal, outside-in, and transtibial techniques. Am J Sports Med 2011; 39 (12) 2604-2610
  • 22 Kim HY, Seo YJ, Kim HJ, Nguyenn T, Shetty NS, Yoo YS. Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy 2011; 27 (10) 1400-1408
  • 23 Lee JS, Kim TH, Kang SY , et al. How isometric are the anatomic femoral tunnel and the anterior tibial tunnel for anterior cruciate ligament reconstruction?. Arthroscopy 2012; 28 (10) 1504-1512 , 1512.e1–1512.e2
  • 24 Nishimoto K, Kuroda R, Mizuno K , et al. Analysis of the graft bending angle at the femoral tunnel aperture in anatomic double bundle anterior cruciate ligament reconstruction: a comparison of the transtibial and the far anteromedial portal technique. Knee Surg Sports Traumatol Arthrosc 2009; 17 (3) 270-276
  • 25 Sapega AA, Moyer RA, Schneck C, Komalahiranya N. Testing for isometry during reconstruction of the anterior cruciate ligament. Anatomical and biomechanical considerations. J Bone Joint Surg Am 1990; 72 (2) 259-267
  • 26 Wang JH, Kim JG, Lee K, Lim HC, Ahn JH. Comparison of femoral graft bending angle and tunnel length between transtibial technique and transportal technique in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2012; 20 (8) 1584-1593
  • 27 Yoo YS, Jeong WS, Shetty NS, Ingham SJ, Smolinski P, Fu F. Changes in ACL length at different knee flexion angles: an in vivo biomechanical study. Knee Surg Sports Traumatol Arthrosc 2010; 18 (3) 292-297
  • 28 Akinleye SD, Sewick A, Wells L. All-epiphyseal ACL reconstruction: a three-year follow-up. Int J Sports Phys Ther 2013; 8 (3) 300-310
  • 29 Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament in skeletally immature patients. A preliminary report. J Bone Joint Surg Am 2003; 85-A (7) 1255-1263
  • 30 Guzzanti V, Falciglia F, Stanitski CL. Physeal-sparing intraarticular anterior cruciate ligament reconstruction in preadolescents. Am J Sports Med 2003; 31 (6) 949-953
  • 31 Lawrence JT, Bowers AL, Belding J, Cody SR, Ganley TJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients. Clin Orthop Relat Res 2010; 468 (7) 1971-1977
  • 32 Lykissas MG, Nathan ST, Wall EJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients: a surgical technique using a split tibial tunnel. Arthrosc Tech 2012; 1 (1) e133-e139
  • 33 McCarthy MM, Graziano J, Green DW, Cordasco FA. All-epiphyseal, all-inside anterior cruciate ligament reconstruction technique for skeletally immature patients. Arthrosc Tech 2012; 1 (2) e231-e239
  • 34 Sena M, Chen J, Dellamaggioria R, Coughlin DG, Lotz JC, Feeley BT. Dynamic evaluation of pivot-shift kinematics in physeal-sparing pediatric anterior cruciate ligament reconstruction techniques. Am J Sports Med 2013; 41 (4) 826-834
  • 35 Stonestreet MJ, Jones KC, Kirkpatrick MS , et al. All-epiphyseal ACL reconstruction improves tibiofemoral contact: an in vitro study. J Pediatr Orthop 2012; 32 (1) 15-20
  • 36 Miller CD, Gerdeman AC, Hart JM , et al. A comparison of 2 drilling techniques on the femoral tunnel for anterior cruciate ligament reconstruction. Arthroscopy 2011; 27 (3) 372-379
  • 37 Markolf KL, Jackson SR, McAllister DR. A comparison of 11 o'clock versus oblique femoral tunnels in the anterior cruciate ligament-reconstructed knee: knee kinematics during a simulated pivot test. Am J Sports Med 2010; 38 (5) 912-917
  • 38 Scopp JM, Jasper LE, Belkoff SM, Moorman III CT. The effect of oblique femoral tunnel placement on rotational constraint of the knee reconstructed using patellar tendon autografts. Arthroscopy 2004; 20 (3) 294-299
  • 39 Lee MC, Seong SC, Lee S , et al. Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy 2007; 23 (7) 771-778
  • 40 Brophy RH, Pearle AD. Single-bundle anterior cruciate ligament reconstruction: a comparison of conventional, central, and horizontal single-bundle virtual graft positions. Am J Sports Med 2009; 37 (7) 1317-1323
  • 41 Basdekis G, Abisafi C, Christel P. Influence of knee flexion angle on femoral tunnel characteristics when drilled through the anteromedial portal during anterior cruciate ligament reconstruction. Arthroscopy 2008; 24 (4) 459-464
  • 42 Carson EW, Anisko EM, Restrepo C, Panariello RA, O'Brien SJ, Warren RF. Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg 2004; 17 (3) 127-132
  • 43 Cooper DE, Small J, Urrea L. Factors affecting graft excursion patterns in endoscopic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 1998; 6 (Suppl. 01) S20-S24
  • 44 Cooper DE, Urrea L, Small J. Factors affecting isometry of endoscopic anterior cruciate ligament reconstruction: the effect of guide offset and rotation. Arthroscopy 1998; 14 (2) 164-170
  • 45 Flandry F, Terry GC, Montgomery RD, Kester MA, Madsen N. Accuracy of clinical isometry and preload testing during anterior cruciate ligament reconstruction. Clin Orthop Relat Res 1992; (279) 214-222
  • 46 Good L, Gillquist J. The value of intraoperative isometry measurements in anterior cruciate ligament reconstruction: an in vivo correlation between substitute tension and length change. Arthroscopy 1993; 9 (5) 525-532
  • 47 Morgan CD, Kalmam VR, Grawl DM. Isometry testing for anterior cruciate ligament reconstruction revisited. Arthroscopy 1995; 11 (6) 647-659
  • 48 Penner DA, Daniel DM, Wood P, Mishra D. An in vitro study of anterior cruciate ligament graft placement and isometry. Am J Sports Med 1988; 16 (3) 238-243
  • 49 Zavras TD, Race A, Bull AM, Amis AA. A comparative study of “isometric” points for anterior cruciate ligament graft attachment. Knee Surg Sports Traumatol Arthrosc 2001; 9 (1) 28-33
  • 50 Höher J, Scheffler SU, Withrow JD , et al. Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. J Orthop Res 2000; 18 (3) 456-461
  • 51 Simonian PT, Williams RJ, Deng XH, Wickiewicz TL, Warren RF. Hamstring and patellar tendon graft response to cyclical loading. Am J Knee Surg 1998; 11 (2) 101-105
  • 52 Stapleton TR, Curd DT, Baker Jr CL. Initial biomechanical properties of anterior cruciate ligament reconstruction autografts. J South Orthop Assoc 1999; 8 (3) 173-180 , discussion 180