Semin intervent Radiol 2016; 33(02): 109-121
DOI: 10.1055/s-0036-1583207
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Considerations for Imaging the Inferior Vena Cava (IVC) with/without IVC Filters

Jessie Aw-Zoretic
1   Northwestern University Feinberg School of Medicine, Chicago, Illinois
,
Jeremy D. Collins
1   Northwestern University Feinberg School of Medicine, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
10 May 2016 (online)

Abstract

Deep venous thrombosis (DVT), thrombosis of the inferior vena cava, and pulmonary embolism (PE) constitute a continuum that includes venous thromboembolic (VTE) disease. VTE is the third most common cardiovascular disorder that affects all races, ethnicities, gender, and ages. VTE predominantly affects the elderly population, exponentially increasing in incidence with increasing age. Venous thromboembolism is not only a singular event but a chronic disease and has been found to have a rate of recurrence approaching 40% among all patients after 10 years. Whether symptomatic or asymptomatic, once thromboembolism is suspected, objective methods are required for the accurate and confirmatory presence of a thrombus with imaging as the next step in the diagnostic algorithm. Imaging also allows for the determination of the extent of clot burden, clot propagation, occlusive versus nonocclusive thrombus, acute versus chronic thrombus, or in some cases thrombus recurrence versus thrombophlebitis. Vena caval filter placement is, in some instances, required to prevent a significant subsequent VTE event. Placement of these therapeutic devices paradoxically promotes thrombus formation, and other sequelae may arise from the placement of inferior vena cava filters. In this article, the authors provide an overview of available techniques for imaging the vena cava with or without a filter and discuss advantages and drawbacks for each.

 
  • References

  • 1 Goldhaber SZ. Venous thromboembolism: epidemiology and magnitude of the problem. Best Pract Res Clin Haematol 2012; 25 (3) 235-242
  • 2 Heit JA. The epidemiology of venous thromboembolism in the community. Arterioscler Thromb Vasc Biol 2008; 28 (3) 370-372
  • 3 Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous thromboembolism: a public health concern. Am J Prev Med 2010; 38 (4, Suppl): S495-S501
  • 4 Prandoni P, Noventa F, Ghirarduzzi A , et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients. Haematologica 2007; 92 (2) 199-205
  • 5 Kahn SR, Comerota AJ, Cushman M , et al; American Heart Association Council on Peripheral Vascular Disease, Council on Clinical Cardiology, and Council on Cardiovascular and Stroke Nursing. The postthrombotic syndrome: evidence-based prevention, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 2014; 130 (18) 1636-1661
  • 6 Shefler A, Gillis J, Lam A, O'Connell AJ, Schell D, Lammi A. Inferior vena cava thrombosis as a complication of femoral vein catheterisation. Arch Dis Child 1995; 72 (4) 343-345
  • 7 American College of Radiology . Available at: https://acsearch.acr.org/docs/69416/Narrative/ . Accessed April 25, 2016
  • 8 Zierler BK. Ultrasonography and diagnosis of venous thromboembolism. Circulation 2004; 109 (12) (Suppl. 01) I9-I14
  • 9 Vogel P, Laing FC, Jeffrey Jr RB, Wing VW. Deep venous thrombosis of the lower extremity: US evaluation. Radiology 1987; 163 (3) 747-751
  • 10 Sigel B, Felix Jr WR, Popky GL, Ipsen J. Diagnosis of lower limb venous thrombosis by Doppler ultrasound technique. Arch Surg 1972; 104 (2) 174-179
  • 11 Baeshko AA, Zhuk GV, Orlovskiĭ IuN , et al. Congenital anomalies of the inferior vena cava: diagnosis and medical treatment [in Russian]. Angiol Sosud Khir 2007; 13 (1) 91-95
  • 12 McAree BJ, O'Donnell ME, Boyd C, Spence RA, Lee B, Soong CV. Inferior vena cava thrombosis in young adults—a review of two cases. Ulster Med J 2009; 78 (2) 129-133
  • 13 Lin EP, Bhatt S, Rubens D, Dogra VS. The importance of monophasic Doppler waveforms in the common femoral vein: a retrospective study. J Ultrasound Med 2007; 26 (7) 885-891
  • 14 Neglén P, Berry MA, Raju S. Endovascular surgery in the treatment of chronic primary and post-thrombotic iliac vein obstruction. Eur J Vasc Endovasc Surg 2000; 20 (6) 560-571
  • 15 Gamblin TC, Ashley DW, Burch S, Solis M. A prospective evaluation of a bedside technique for placement of inferior vena cava filters: accuracy and limitations of intravascular ultrasound. Am Surg 2003; 69 (5) 382-386
  • 16 Ashley DW, Gamblin TC, Burch ST, Solis MM. Accurate deployment of vena cava filters: comparison of intravascular ultrasound and contrast venography. J Trauma 2001; 50 (6) 975-981
  • 17 Bonn J, Liu JB, Eschelman DJ, Sullivan KL, Pinheiro LW, Gardiner Jr GA. Intravascular ultrasound as an alternative to positive-contrast vena cavography prior to filter placement. J Vasc Interv Radiol 1999; 10 (7) 843-849
  • 18 Mavili E, Ozturk M, Akcali Y , et al. Direct CT venography for evaluation of the lower extremity venous anomalies of Klippel-Trenaunay Syndrome. AJR Am J Roentgenol 2009; 192 (6) W311-6
  • 19 Shah AA, Buckshee N, Yankelevitz DF, Henschke CI. Assessment of deep venous thrombosis using routine pelvic CT. AJR Am J Roentgenol 1999; 173 (3) 659-663
  • 20 Stehling MK, Rosen MP, Weintraub J, Kim D, Raptopoulos V. Spiral CT venography of the lower extremity. AJR Am J Roentgenol 1994; 163 (2) 451-453
  • 21 Cham MD, Yankelevitz DF, Shaham D , et al; The Pulmonary Angiography-Indirect CT Venography Cooperative Group. Deep venous thrombosis: detection by using indirect CT venography. Radiology 2000; 216 (3) 744-751
  • 22 Loud PA, Grossman ZD, Klippenstein DL, Ray CE. Combined CT venography and pulmonary angiography: a new diagnostic technique for suspected thromboembolic disease. AJR Am J Roentgenol 1998; 170 (4) 951-954
  • 23 Yankelevitz DF, Gamsu G, Shah A , et al. Optimization of combined CT pulmonary angiography with lower extremity CT venography. AJR Am J Roentgenol 2000; 174 (1) 67-69
  • 24 Min SK, Kim SY, Park YJ , et al. Role of three-dimensional computed tomography venography as a powerful navigator for varicose vein surgery. J Vasc Surg 2010; 51 (4) 893-899
  • 25 Arakawa H, Kohno T, Hiki T, Kaji Y. CT pulmonary angiography and CT venography: factors associated with vessel enhancement. AJR Am J Roentgenol 2007; 189 (1) 156-161
  • 26 Nakaura T, Awai K, Oda S , et al. Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. AJR Am J Roentgenol 2011; 196 (6) 1332-1338
  • 27 Morcos SK. Extracellular gadolinium contrast agents: differences in stability. Eur J Radiol 2008; 66 (2) 175-179
  • 28 Swan SK, Lambrecht LJ, Townsend R , et al. Safety and pharmacokinetic profile of gadobenate dimeglumine in subjects with renal impairment. Invest Radiol 1999; 34 (7) 443-448
  • 29 Marckmann P, Skov L, Rossen K , et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 2006; 17 (9) 2359-2362
  • 30 Sadowski EA, Bennett LK, Chan MR , et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 2007; 243 (1) 148-157
  • 31 Grobner T. Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?. Nephrol Dial Transplant 2006; 21 (4) 1104-1108
  • 32 Perazella MA. Nephrogenic systemic fibrosis, kidney disease, and gadolinium: is there a link?. Clin J Am Soc Nephrol 2007; 2 (2) 200-202
  • 33 Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014; 270 (3) 834-841
  • 34 Kanda T, Osawa M, Oba H , et al. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 2015; 275 (3) 803-809
  • 35 Radbruch A, Weberling LD, Kieslich PJ , et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015; 275 (3) 783-791
  • 36 Kanda T, Fukusato T, Matsuda M , et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015; 276 (1) 228-232
  • 37 Bashir MR, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 2015; 41 (4) 884-898
  • 38 FDA . Available at: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm440479.htm . Accessed April 25, 2016
  • 39 Goyen M. Gadofosveset-enhanced magnetic resonance angiography. Vasc Health Risk Manag 2008; 4 (1) 1-9
  • 40 Ruehm SG, Zimny K, Debatin JF. Direct contrast-enhanced 3D MR venography. Eur Radiol 2001; 11 (1) 102-112
  • 41 Laissy JP, Cinqualbre A, Loshkajian A , et al. Assessment of deep venous thrombosis in the lower limbs and pelvis: MR venography versus duplex Doppler sonography. AJR Am J Roentgenol 1996; 167 (4) 971-975
  • 42 Enden T, Storås TH, Negård A , et al. Visualization of deep veins and detection of deep vein thrombosis (DVT) with balanced turbo field echo (b-TFE) and contrast-enhanced T1 fast field echo (CE-FFE) using a blood pool agent (BPA). J Magn Reson Imaging 2010; 31 (2) 416-424
  • 43 Hansch A, Betge S, Poehlmann G , et al. Combined magnetic resonance imaging of deep venous thrombosis and pulmonary arteries after a single injection of a blood pool contrast agent. Eur Radiol 2011; 21 (2) 318-325
  • 44 Hadizadeh DR, Kukuk GM, Fahlenkamp UL , et al. Simultaneous MR arteriography and venography with blood pool contrast agent detects deep venous thrombosis in suspected arterial disease. AJR Am J Roentgenol 2012; 198 (5) 1188-1195
  • 45 Carpenter JP, Holland GA, Baum RA, Owen RS, Carpenter JT, Cope C. Magnetic resonance venography for the detection of deep venous thrombosis: comparison with contrast venography and duplex Doppler ultrasonography. J Vasc Surg 1993; 18 (5) 734-741
  • 46 Thiele H, Nagel E, Paetsch I , et al. Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 2001; 14 (4) 362-367
  • 47 Cukur T, Lee JH, Bangerter NK, Hargreaves BA, Nishimura DG. Non-contrast-enhanced flow-independent peripheral MR angiography with balanced SSFP. Magn Reson Med 2009; 61 (6) 1533-1539
  • 48 Lindquist CM, Karlicki F, Lawrence P, Strzelczyk J, Pawlyshyn N, Kirkpatrick ID. Utility of balanced steady-state free precession MR venography in the diagnosis of lower extremity deep venous thrombosis. AJR Am J Roentgenol 2010; 194 (5) 1357-1364
  • 49 Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med 2010; 63 (4) 951-958
  • 50 Ayache JB, Collins JD. MR angiography of the abdomen and pelvis. Radiol Clin North Am 2014; 52 (4) 839-859
  • 51 Hodnett PA, Koktzoglou I, Davarpanah AH , et al. Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology 2011; 260 (1) 282-293
  • 52 Amin P, Collins JD, Koktzoglou I , et al. Evaluating peripheral arterial disease with unenhanced quiescent-interval single-shot MR angiography at 3 T. AJR Am J Roentgenol 2014; 202 (4) 886-893
  • 53 Lichy MP, Wietek BM, Mugler III JP , et al. Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 2005; 40 (12) 754-760
  • 54 Zhang Z, Fan Z, Carroll TJ , et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Invest Radiol 2009; 44 (9) 619-626
  • 55 Morita S, Masukawa A, Suzuki K, Hirata M, Kojima S, Ueno E. Unenhanced MR angiography: techniques and clinical applications in patients with chronic kidney disease. Radiographics: a review publication of the Radiological Society of North America. Inc 2011; 31: E13-E33
  • 56 Park JH, Lee JB, Han MC , et al. Sonographic evaluation of inferior vena caval obstruction: correlative study with vena cavography. AJR Am J Roentgenol 1985; 145 (4) 757-762
  • 57 Sing RF, Stackhouse DJ, Jacobs DG, Heniford BT. Safety and accuracy of bedside carbon dioxide cavography for insertion of inferior vena cava filters in the intensive care unit. J Am Coll Surg 2001; 192 (2) 168-171
  • 58 Schmelzer TM, Christmas AB, Jacobs DG, Heniford BT, Sing RF. Imaging of the vena cava in the intensive care unit prior to vena cava filter insertion: carbon dioxide as an alternative to iodinated contrast. Am Surg 2008; 74 (2) 141-145
  • 59 Moos JM, Ham SW, Han SM , et al. Safety of carbon dioxide digital subtraction angiography. Arch Surg 2011; 146 (12) 1428-1432
  • 60 Caplin DM, Nikolic B, Kalva SP, Ganguli S, Saad WE, Zuckerman DA ; Society of Interventional Radiology Standards of Practice Committee. Quality improvement guidelines for the performance of inferior vena cava filter placement for the prevention of pulmonary embolism. J Vasc Interv Radiol 2011; 22 (11) 1499-1506
  • 61 Harvey JJ, Hopkins J, McCafferty IJ, Jones RG. Inferior vena cava filters: what radiologists need to know. Clin Radiol 2013; 68 (7) 721-732
  • 62 Nazzal M, Chan E, Nazzal M , et al. Complications related to inferior vena cava filters: a single-center experience. Ann Vasc Surg 2010; 24 (4) 480-486
  • 63 Bustamante M, Abascal F, Garcia-Valtuille R, González-Tutor A, Gómez JM. Sudden death in a patient caused by migration of an Antheor vena cava filter to the heart. J Vasc Interv Radiol 1998; 9 (3) 521-522