Synthesis, Inhaltsverzeichnis Synthesis 2018; 50(02): 282-294DOI: 10.1055/s-0036-1590927 paper © Georg Thieme Verlag Stuttgart · New Yorkα-Selective Glycosylation of 3,6-O-o-Xylylene-Bridged Glucosyl Fluoride Atsushi Motoyama School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan eMail: hidetosh@kwansei.ac.jp , Tomoki Arai School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan eMail: hidetosh@kwansei.ac.jp , Kazutada Ikeuchi School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan eMail: hidetosh@kwansei.ac.jp , Kazuya Aki School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan eMail: hidetosh@kwansei.ac.jp , Shinnosuke Wakamori School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan eMail: hidetosh@kwansei.ac.jp , Hidetoshi Yamada * School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan eMail: hidetosh@kwansei.ac.jp› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Erratum zu diesem Artikel:α-Selective Glycosylation of 3,6-O-o-Xylylene-Bridged Glucosyl FluorideSynthesis 2018; 50(23): 4695-4695DOI: 10.1055/s-0037-1610841 Abstract A 1,2-cis-(α)-selective glycosylation has been developed. An ortho-xylylene group bridged between 3-O and 6-O of d-glucosyl fluoride, which straddles the β-face of the pyranose ring, hinders the approach of glycosyl acceptors from that face. The determination of the three-dimensional structure of the bridged glucosyl fluoride, the optimization process of the reaction conditions oriented toward kinetic control to realize the high α-selectivity, and the scope of the reaction are described. Key words Key wordsglycosylation - 1,2-cis-selectivity - kinetic control - conformation - o-xylylene bridge Volltext Referenzen References 1a Boons G.-J. Hale KJ. Organic Synthesis with Carbohydrates. Sheffield Academic Press; Sheffield: 2000 1b Demchenko AV. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. Wiley-VCH; Weinheim: 2008 2 Gridley JJ. Osborn HM. I. J. Chem. Soc., Perkin Trans. 1 2000; 1471 3a Banoub J. Bundle DR. Can. J. Chem. 1979; 57: 2091 3b Flitsh SL. Nature 2005; 437: 201 3c Guo J. Ye X.-S. Molecules 2010; 15: 7235 4 Demchenko AV. Curr. Org. Chem. 2003; 7: 35 5a Demchenko AV. Synlett 2003; 1225 5b Nigudkar SS. Demchenko AV. Chem. Sci. 2015; 6: 2687 5c Komarova BS. Tsvetkov YE. Nifantiev NE. Chem. Rec. 2016; 16: 488 For NGP based on acyl groups at O-3, see: 6a Parameswar AR. Pornsuriyasak P. Lubanowski NA. Demchenko AV. Tetrahedron 2007; 63: 10083 6b Alpe M. Oscarson S. Carbohydr. Res. 2002; 337: 1715 6c Ennis SC. Cumpstey I. Fairbanks AJ. Butters TD. Mackeen M. Wormald MR. Tetrahedron 2002; 58: 9403 For NGP based on acyl groups at O-4, see: 7a Nunomura S. Ogawa T. Tetrahedron Lett. 1988; 29: 5681 7b Budhadev D. Mukhopadhyay B. Carbohydr. Res. 2014; 394: 26 For NGP based on acyl groups at O-6, see: 8a Lourenço EC. Maycock CD. Ventura MR. Carbohydr. Res. 2009; 344: 2073 8b Mandal PK. Chheda PR. Tetrahedron Lett. 2015; 56: 900 9a Kim J.-H. Yang H. Park J. Boons G.-J. J. Am. Chem. Soc. 2005; 127: 12090 9b Boltje TJ. Kim J.-H. Park J. Boons G.-J. Nat. Chem. 2010; 2: 552 9c Boltje TJ. Kim J.-H. Park J. Boons G.-J. Org. Lett. 2011; 13: 284 9d Fang T. Mo K.-F. Boons G.-J. J. Am. Chem. Soc. 2012; 134: 7545 9e Fang T. Gu Y. Huang W. Boons G.-J. J. Am. Chem. Soc. 2016; 138: 3002 10a Fairbanks AJ. Synlett 2003; 1945 10b Ishiwata A. Lee YJ. Ito Y. Org. Biomol. Chem. 2010; 8: 3596 11a Stork G. Kim G. J. Am. Chem. Soc. 1992; 114: 1087 11b Bols M. Skrydstrup T. Chem. Rev. 1995; 95: 1253 11c Partridge KM. Bader SJ. Buchan ZA. Taylor CE. Montgomery J. Angew. Chem. Int. Ed. 2013; 52: 13647 12a Attolino E. Cumpstey I. Fairbanks AJ. Carbohydr. Res. 2006; 341: 1609 12b Leigh CD. Bertozzi CR. J. Org. Chem. 2008; 73: 1008 13a Nakagawa A. Tanaka M. Hanamura S. Takahashi D. Toshima K. Angew. Chem. Int. Ed. 2015; 54: 10935 13b Tanaka M. Nashida J. Takahashi D. Toshima K. Org. Lett. 2016; 18: 2288 13c Tanaka M. Takahashi D. Toshima K. Org. Lett. 2016; 18: 5030 14 Pornsuriyasak P. Jia XG. Kaeothip S. Demchenko AV. Org. Lett. 2016; 18: 2316 15a Smoot JT. Pornsuriyasak P. Demchenko AV. Angew. Chem. Int. Ed. 2005; 44: 7123 15b Yasomanee JP. Demchenko AV. J. Am. Chem. Soc. 2012; 134: 20097 16a Houdier S. Vottero PJ. A. Carbohydr. Res. 1992; 232: 349 16b Fukase K. Nakai Y. Kanoh T. Kusumoto S. Synlett 1998; 84 16c Fukase K. Nakai Y. Egusa K. Porco JA. Jr. Kusumoto S. Synlett 1999; 1074 16d Tokimoto H. Fujimoto Y. Fukase K. Kusumoto S. Tetrahedron: Asymmetry 2005; 16: 441 17 Okada Y. Asakura N. Bando M. Ashikaga Y. Yamada H. J. Am. Chem. Soc. 2012; 134: 6940 18 Haasnoot CA. G. de Leeuw FA. A. M. Altona C. Tetrahedron 1980; 36: 2783 19a Becke AD. J. Chem. Phys. 1993; 98: 5648 19b Stephens PJ. Devlin FJ. Chabalowski CF. Frisch MJ. J. Phys. Chem. 1994; 98: 11623 20a Mukaiyama T. Murai Y. Shoda S. Chem. Lett. 1981; 431 20b Hashimoto S. Hayashi M. Noyori R. Tetrahedron Lett. 1984; 25: 1379 20c Nicolaou KC. Chucholowski A. Dolle RE. Randall JL. J. Chem. Soc., Chem. Commun. 1984; 1155 20d Kunz H. Sager W. Helv. Chim. Acta 1985; 68: 283 20e Ogawa T. Takahashi Y. Carbohydr. Res. 1985; 138: C5 20f Matsumoto T. Maeta H. Suzuki K. Tsuchihashi G. Tetrahedron Lett. 1988; 29: 3567 20g Suzuki K. Maeta H. Matsumoto T. Tsuchihashi G. Tetrahedron Lett. 1988; 29: 3571 20h Mukaiyama T. Maeshima H. Jona H. Chem. Lett. 2001; 388 21 Cao Y. Kasai Y. Bando M. Kawagoe M. Yamada H. Tetrahedron 2009; 65: 2574 22 Mizuno M. Kobayashi K. Nakajima H. Koya M. Inazu T. Synth. Commun. 2002; 32: 1665 23 Spijker NM. van Boekel CA. A. Angew. Chem. Int. Ed. 1991; 30: 180 Zusatzmaterial Zusatzmaterial Supporting Information