Semin Thromb Hemost 2018; 44(05): 475-482
DOI: 10.1055/s-0036-1597286
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

New Insights in the Pathophysiology of Antiphospholipid Syndrome

Anastasia Sacharidou
1   Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
,
Philip W. Shaul
1   Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
,
Chieko Mineo
1   Department of Pediatrics, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
27 January 2017 (online)

Abstract

The antiphospholipid syndrome (APS) is an autoimmune disorder characterized by an elevated risk for arterial and venous thrombosis and pregnancy-related morbidity. Since the discovery of the disease in 1980s, numerous studies in cell culture systems, in animal models, and in patient populations have been reported, leading to a deeper understanding of the pathogenesis of APS. These studies have determined that circulating autoantibodies, collectively called antiphospholipid antibodies (aPL), the majority of which recognize cell surface proteins attached to the plasma membrane phospholipids, play a causal role in the development of the disease. The binding of aPL to the cell surface antigens triggers interaction of the complex with transmembrane receptors to initiate intracellular signaling in critical cell types, including platelets, monocytes, endothelial cells, and trophoblasts. Subsequent alteration of various cell functions results in inflammation, thrombus formation, and pregnancy complications. Apolipoprotein E receptor 2 (apoER2), a lipoprotein receptor family member, has been implicated as a mediator for aPL actions in platelets and endothelial cells. Nitric oxide (NO) is a signaling molecule known to exert potent antithrombotic, anti-inflammatory, and anti-atherogenic effects. NO insufficiency and oxidative stress have been linked to APS pathogenesis. This review will focus on the recent findings on how apoER2 and dysregulation of NO production contribute to aPL-mediated pathologies in APS.

 
  • References

  • 1 Giannakopoulos B, Krilis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med 2013; 368 (11) 1033-1044
  • 2 Miyakis S, Lockshin MD, Atsumi T. , et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4 (02) 295-306
  • 3 Ruiz-Irastorza G, Crowther M, Branch W, Khamashta MA. Antiphospholipid syndrome. Lancet 2010; 376 (9751): 1498-1509
  • 4 Amaya-Amaya J, Rojas-Villarraga A, Anaya JM. Cardiovascular disease in the antiphospholipid syndrome. Lupus 2014; 23 (12) 1288-1291
  • 5 Ambrosino P, Lupoli R, Tortora A. , et al. Cardiovascular risk markers in patients with primary aldosteronism: a systematic review and meta-analysis of literature studies. Int J Cardiol 2016; 208: 46-55
  • 6 de Jesus GR, Agmon-Levin N, Andrade CA. , et al. 14th International Congress on Antiphospholipid Antibodies Task Force report on obstetric antiphospholipid syndrome. Autoimmun Rev 2014; 13 (08) 795-813
  • 7 Levy RA, Dos Santos FC, de Jesús GR, de Jesús NR. Antiphospholipid antibodies and antiphospholipid syndrome during pregnancy: diagnostic concepts. Front Immunol 2015; 6: 205
  • 8 Cervera R, Serrano R, Pons-Estel GJ. , et al; Euro-Phospholipid Project Group (European Forum on Antiphospholipid Antibodies). Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis 2015; 74 (06) 1011-1018
  • 9 Chighizola CB, Andreoli L, de Jesus GR, Banzato A, Pons-Estel GJ, Erkan D. ; APS ACTION. The association between antiphospholipid antibodies and pregnancy morbidity, stroke, myocardial infarction, and deep vein thrombosis: a critical review of the literature. Lupus 2015; 24 (09) 980-984
  • 10 Meroni PL, Borghi MO, Raschi E, Tedesco F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol 2011; 7 (06) 330-339
  • 11 Pierangeli SS, Chen PP, Raschi E. , et al. Antiphospholipid antibodies and the antiphospholipid syndrome: pathogenic mechanisms. Semin Thromb Hemost 2008; 34 (03) 236-250
  • 12 de Groot PG, Urbanus RT. The significance of autoantibodies against β2-glycoprotein I. Blood 2012; 120 (02) 266-274
  • 13 Agar C, van Os GM, Mörgelin M. , et al. Beta2-glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome. Blood 2010; 116 (08) 1336-1343
  • 14 de Groot PG, Meijers JC. β(2) -Glycoprotein I: evolution, structure and function. J Thromb Haemost 2011; 9 (07) 1275-1284
  • 15 Ramesh S, Morrell CN, Tarango C. , et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2. J Clin Invest 2011; 121 (01) 120-131
  • 16 Raschi E, Chighizola CB, Grossi C. , et al. β2-glycoprotein I, lipopolysaccharide and endothelial TLR4: three players in the two hit theory for anti-phospholipid-mediated thrombosis. J Autoimmun 2014; 55: 42-50
  • 17 Romay-Penabad Z, Aguilar-Valenzuela R, Urbanus RT. , et al. Apolipoprotein E receptor 2 is involved in the thrombotic complications in a murine model of the antiphospholipid syndrome. Blood 2011; 117 (04) 1408-1414
  • 18 Xie H, Sheng L, Zhou H, Yan J. The role of TLR4 in pathophysiology of antiphospholipid syndrome-associated thrombosis and pregnancy morbidity. Br J Haematol 2014; 164 (02) 165-176
  • 19 Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113 (13) 1708-1714
  • 20 Moncada S. Nitric oxide in the vasculature: physiology and pathophysiology. Ann N Y Acad Sci 1997; 811: 60-67 , discussion 67–69
  • 21 Ames PR, Tommasino C, Alves J. , et al. Antioxidant susceptibility of pathogenic pathways in subjects with antiphospholipid antibodies: a pilot study. Lupus 2000; 9 (09) 688-695
  • 22 Ames PR, Batuca JR, Ciampa A, Iannaccone L, Delgado Alves J. Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome. J Rheumatol 2010; 37 (12) 2523-2530
  • 23 Benhamou Y, Miranda S, Armengol G. , et al. Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: role of reduced oxidative stress. Vascul Pharmacol 2015; 71: 93-101
  • 24 Delgado Alves J, Mason LJ, Ames PR. , et al. Antiphospholipid antibodies are associated with enhanced oxidative stress, decreased plasma nitric oxide and paraoxonase activity in an experimental mouse model. Rheumatology (Oxford) 2005; 44 (10) 1238-1244
  • 25 Dieckmann M, Dietrich MF, Herz J. Lipoprotein receptors--an evolutionarily ancient multifunctional receptor family. Biol Chem 2010; 391 (11) 1341-1363
  • 26 Herz J. Apolipoprotein E receptors in the nervous system. Curr Opin Lipidol 2009; 20 (03) 190-196
  • 27 Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci 2006; 7 (11) 850-859
  • 28 Kim DH, Iijima H, Goto K. , et al. Human apolipoprotein E receptor 2. A novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. J Biol Chem 1996; 271 (14) 8373-8380
  • 29 Beffert U, Stolt PC, Herz J. Functions of lipoprotein receptors in neurons. J Lipid Res 2004; 45 (03) 403-409
  • 30 Hiesberger T, Trommsdorff M, Howell BW. , et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 1999; 24 (02) 481-489
  • 31 Trommsdorff M, Gotthardt M, Hiesberger T. , et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 1999; 97 (06) 689-701
  • 32 Beffert U, Nematollah Farsian F, Masiulis I. , et al. ApoE receptor 2 controls neuronal survival in the adult brain. Curr Biol 2006; 16 (24) 2446-2452
  • 33 Beffert U, Durudas A, Weeber EJ. , et al. Functional dissection of Reelin signaling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J Neurosci 2006; 26 (07) 2041-2052
  • 34 Korschineck I, Ziegler S, Breuss J. , et al. Identification of a novel exon in apolipoprotein E receptor 2 leading to alternatively spliced mRNAs found in cells of the vascular wall but not in neuronal tissue. J Biol Chem 2001; 276 (16) 13192-13197
  • 35 Riddell DR, Vinogradov DV, Stannard AK, Chadwick N, Owen JS. Identification and characterization of LRP8 (apoER2) in human blood platelets. J Lipid Res 1999; 40 (10) 1925-1930
  • 36 Pennings MT, Derksen RH, Urbanus RT, Tekelenburg WL, Hemrika W, de Groot PG. Platelets express three different splice variants of ApoER2 that are all involved in signaling. J Thromb Haemost 2007; 5 (07) 1538-1544
  • 37 Sacre SM, Stannard AK, Owen JS. Apolipoprotein E (apoE) isoforms differentially induce nitric oxide production in endothelial cells. FEBS Lett 2003; 540 (1-3): 181-187
  • 38 Swertfeger DK, Hui DY. Apolipoprotein E receptor binding versus heparan sulfate proteoglycan binding in its regulation of smooth muscle cell migration and proliferation. J Biol Chem 2001; 276 (27) 25043-25048
  • 39 Sinha RK, Yang XV, Fernández JA, Xu X, Mosnier LO, Griffin JH. Apolipoprotein E receptor 2 mediates activated protein C-induced endothelial Akt activation and endothelial barrier stabilization. Arterioscler Thromb Vasc Biol 2016; 36 (03) 518-524
  • 40 Yang XV, Banerjee Y, Fernández JA. , et al. Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells. Proc Natl Acad Sci U S A 2009; 106 (01) 274-279
  • 41 Ulrich V, Konaniah ES, Herz J. , et al. Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci U S A 2014; 111 (37) 13493-13498
  • 42 Ding Y, Huang L, Xian X. , et al. Loss of Reelin protects against atherosclerosis by reducing leukocyte-endothelial cell adhesion and lesion macrophage accumulation. Sci Signal 2016; 9 (419) ra29
  • 43 Robertson JO, Li W, Silverstein RL, Topol EJ, Smith JD. Deficiency of LRP8 in mice is associated with altered platelet function and prolonged time for in vivo thrombosis. Thromb Res 2009; 123 (04) 644-652
  • 44 Waltmann MD, Basford JE, Konaniah ES, Weintraub NL, Hui DY. Apolipoprotein E receptor-2 deficiency enhances macrophage susceptibility to lipid accumulation and cell death to augment atherosclerotic plaque progression and necrosis. Biochim Biophys Acta 2014; 1842 (09) 1395-1405
  • 45 Martinelli N, Olivieri O, Shen GQ. , et al. Additive effect of LRP8/APOER2 R952Q variant to APOE epsilon2/epsilon3/epsilon4 genotype in modulating apolipoprotein E concentration and the risk of myocardial infarction: a case-control study. BMC Med Genet 2009; 10: 41
  • 46 Shen GQ, Girelli D, Li L. , et al. A novel molecular diagnostic marker for familial and early-onset coronary artery disease and myocardial infarction in the LRP8 gene. Circ Cardiovasc Genet 2014; 7 (04) 514-520
  • 47 Shen GQ, Li L, Girelli D. , et al. An LRP8 variant is associated with familial and premature coronary artery disease and myocardial infarction. Am J Hum Genet 2007; 81 (04) 780-791
  • 48 Wang Q, Rao S, Shen GQ. , et al. Premature myocardial infarction novel susceptibility locus on chromosome 1P34-36 identified by genomewide linkage analysis. Am J Hum Genet 2004; 74 (02) 262-271
  • 49 Lutters BC, Derksen RH, Tekelenburg WL, Lenting PJ, Arnout J, de Groot PG. Dimers of beta 2-glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2′. J Biol Chem 2003; 278 (36) 33831-33838
  • 50 Pennings MT, van Lummel M, Derksen RH. , et al. Interaction of beta2-glycoprotein I with members of the low density lipoprotein receptor family. J Thromb Haemost 2006; 4 (08) 1680-1690
  • 51 Pennings MT, Derksen RH, van Lummel M. , et al. Platelet adhesion to dimeric beta-glycoprotein I under conditions of flow is mediated by at least two receptors: glycoprotein Ibalpha and apolipoprotein E receptor 2′. J Thromb Haemost 2007; 5 (02) 369-377
  • 52 Urbanus RT, Pennings MT, Derksen RH, de Groot PG. Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2′. J Thromb Haemost 2008; 6 (08) 1405-1412
  • 53 van Lummel M, Pennings MT, Derksen RH. , et al. The binding site in beta2-glycoprotein I for ApoER2′ on platelets is located in domain V. J Biol Chem 2005; 280 (44) 36729-36736
  • 54 Ulrich V, Konaniah ES, Lee WR. , et al. Antiphospholipid antibodies attenuate endothelial repair and promote neointima formation in mice. J Am Heart Assoc 2014; 3 (05) e001369
  • 55 Chen X, Guo Z, Okoro EU. , et al. Up-regulation of ATP binding cassette transporter A1 expression by very low density lipoprotein receptor and apolipoprotein E receptor 2. J Biol Chem 2012; 287 (06) 3751-3759
  • 56 Sorice M, Longo A, Capozzi A. , et al. Anti-beta2-glycoprotein I antibodies induce monocyte release of tumor necrosis factor alpha and tissue factor by signal transduction pathways involving lipid rafts. Arthritis Rheum 2007; 56 (08) 2687-2697
  • 57 Zhou H, Sheng L, Wang H. , et al. Anti-β2GPI/β2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-κB signaling pathways. Thromb Res 2013; 132 (06) 742-749
  • 58 Kato M, Atsumi T, Oku K. , et al. The involvement of CD36 in monocyte activation by antiphospholipid antibodies. Lupus 2013; 22 (08) 761-771
  • 59 López-Pedrera C, Ruiz-Limón P, Aguirre MA. , et al. Global effects of fluvastatin on the prothrombotic status of patients with antiphospholipid syndrome. Ann Rheum Dis 2011; 70 (04) 675-682
  • 60 Perez-Sanchez C, Barbarroja N, Messineo S. , et al. Gene profiling reveals specific molecular pathways in the pathogenesis of atherosclerosis and cardiovascular disease in antiphospholipid syndrome, systemic lupus erythematosus and antiphospholipid syndrome with lupus. Ann Rheum Dis 2015; 74 (07) 1441-1449
  • 61 Ames PR, Margarita A, Delgado Alves J, Tommasino C, Iannaccone L, Brancaccio V. Anticardiolipin antibody titre and plasma homocysteine level independently predict intima media thickness of carotid arteries in subjects with idiopathic antiphospholipid antibodies. Lupus 2002; 11 (04) 208-214
  • 62 Ames PR, Antinolfi I, Scenna G, Gaeta G, Margaglione M, Margarita A. Atherosclerosis in thrombotic primary antiphospholipid syndrome. J Thromb Haemost 2009; 7 (04) 537-542
  • 63 Ames PR, Margarita A, Sokoll KB, Weston M, Brancaccio V. Premature atherosclerosis in primary antiphospholipid syndrome: preliminary data. Ann Rheum Dis 2005; 64 (02) 315-317
  • 64 Der H, Kerekes G, Veres K. , et al. Impaired endothelial function and increased carotid intima-media thickness in association with elevated von Willebrand antigen level in primary antiphospholipid syndrome. Lupus 2007; 16 (07) 497-503
  • 65 Peleg H, Bursztyn M, Hiller N, Hershcovici T. Renal artery stenosis with significant proteinuria may be reversed after nephrectomy or revascularization in patients with the antiphospholipid antibody syndrome: a case series and review of the literature. Rheumatol Int 2012; 32 (01) 85-90
  • 66 Remondino GI, Mysler E, Pissano MN. , et al. A reversible bilateral renal artery stenosis in association with antiphospholipid syndrome. Lupus 2000; 9 (01) 65-67
  • 67 Rosenthal E, Sangle SR, Taylor P, Khamashta MA, Hughes GR, D'Cruz DP. Treatment of mesenteric angina with prolonged anticoagulation in a patient with antiphospholipid (Hughes) syndrome and coeliac artery stenosis. Ann Rheum Dis 2006; 65 (10) 1398-1399
  • 68 Sangle SR, Jan W, Lau IS, Bennett AN, Hughes GR, D'Cruz DP. Coeliac artery stenosis and antiphospholipid (Hughes) syndrome/antiphospholipid anti-bodies. Clin Exp Rheumatol 2006; 24 (03) 349
  • 69 Sangle SR, D'Cruz DP, Abbs IC, Khamashta MA, Hughes GR. Renal artery stenosis in hypertensive patients with antiphospholipid (Hughes) syndrome: outcome following anticoagulation. Rheumatology (Oxford) 2005; 44 (03) 372-377
  • 70 Sangle SR, D'Cruz DP, Jan W. , et al. Renal artery stenosis in the antiphospholipid (Hughes) syndrome and hypertension. Ann Rheum Dis 2003; 62 (10) 999-1002
  • 71 Sangle SR, D'Cruz DP. Renal artery stenosis: a new facet of the antiphospholipid (Hughes) syndrome. Lupus 2003; 12 (11) 803-804
  • 72 Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 2005; 85 (01) 9-23
  • 73 Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28 (05) 812-819
  • 74 Hui DY. Intimal hyperplasia in murine models. Curr Drug Targets 2008; 9 (03) 251-260
  • 75 Kipshidze N, Dangas G, Tsapenko M. , et al. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol 2004; 44 (04) 733-739
  • 76 Ma X, Hibbert B, Dhaliwal B. , et al. Delayed re-endothelialization with rapamycin-coated stents is rescued by the addition of a glycogen synthase kinase-3beta inhibitor. Cardiovasc Res 2010; 86 (02) 338-345
  • 77 Schober A, Weber C. Mechanisms of monocyte recruitment in vascular repair after injury. Antioxid Redox Signal 2005; 7 (9-10): 1249-1257
  • 78 von Hundelshausen P, Weber C. ; von HP. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100 (01) 27-40
  • 79 Weber C. Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 2005; 96 (06) 612-616
  • 80 Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 2006; 203 (09) 2165-2175
  • 81 Shoenfeld Y, Sherer Y, Blank M. Antiphospholipid syndrome in pregnancy--animal models and clinical implications. Scand J Rheumatol Suppl 1998; 107: 33-36
  • 82 Sebire NJ, Fox H, Backos M, Rai R, Paterson C, Regan L. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure. Hum Reprod 2002; 17 (04) 1067-1071
  • 83 Viall CA, Chamley LW. Histopathology in the placentae of women with antiphospholipid antibodies: A systematic review of the literature. Autoimmun Rev 2015; 14 (05) 446-471
  • 84 Bose P, Kadyrov M, Goldin R. , et al. Aberrations of early trophoblast differentiation predispose to pregnancy failure: lessons from the anti-phospholipid syndrome. Placenta 2006; 27 (08) 869-875
  • 85 Tong M, Viall CA, Chamley LW. Antiphospholipid antibodies and the placenta: a systematic review of their in vitro effects and modulation by treatment. Hum Reprod Update 2015; 21 (01) 97-118
  • 86 Ulrich V, Gelber SE, Vukelic M. , et al. ApoE Receptor 2 Mediation of Trophoblast Dysfunction and Pregnancy Complications Induced by Antiphospholipid Antibodies in Mice. Arthritis Rheumatol 2016; 68 (03) 730-739
  • 87 Murray MJ, Lessey BA. Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin Reprod Endocrinol 1999; 17 (03) 275-290
  • 88 Taylor CM, McLaughlin B, Weiss JB, Maroudas NG. Concentrations of endothelial-cell-stimulating angiogenesis factor, a major component of human uterine angiogenesis factor, in human and bovine embryonic tissues and decidua. J Reprod Fertil 1992; 94 (02) 445-449
  • 89 Di Simone N, Di Nicuolo F, D'Ippolito S. , et al. Antiphospholipid antibodies affect human endometrial angiogenesis. Biol Reprod 2010; 83 (02) 212-219
  • 90 Di Simone N, D'Ippolito S, Marana R. , et al. Antiphospholipid antibodies affect human endometrial angiogenesis: protective effect of a synthetic peptide (TIFI) mimicking the phospholipid binding site of β(2) glycoprotein I. Am J Reprod Immunol 2013; 70 (04) 299-308
  • 91 Wang L, Wang X, Laird N, Zuckerman B, Stubblefield P, Xu X. Polymorphism in maternal LRP8 gene is associated with fetal growth. Am J Hum Genet 2006; 78 (05) 770-777
  • 92 Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2016; 575 (2, Pt 3): 584-599
  • 93 Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014; 237 (01) 208-219
  • 94 Charakida M, Besler C, Batuca JR. , et al. Vascular abnormalities, paraoxonase activity, and dysfunctional HDL in primary antiphospholipid syndrome. JAMA 2009; 302 (11) 1210-1217
  • 95 Cozzi MR, Guglielmini G, Battiston M. , et al. Visualization of nitric oxide production by individual platelets during adhesion in flowing blood. Blood 2015; 125 (04) 697-705
  • 96 Freedman JE, Loscalzo J, Barnard MR, Alpert C, Keaney JF, Michelson AD. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest 1997; 100 (02) 350-356
  • 97 Modrego J, Azcona L, Martín-Palacios N. , et al. Platelet content of nitric oxide synthase 3 phosphorylated at Serine 1177 is associated with the functional response of platelets to aspirin. PLoS One 2013; 8 (12) e82574
  • 98 Momi S, Caracchini R, Falcinelli E, Evangelista S, Gresele P. Stimulation of platelet nitric oxide production by nebivolol prevents thrombosis. Arterioscler Thromb Vasc Biol 2014; 34 (04) 820-829
  • 99 Ioannou Y, Romay-Penabad Z, Pericleous C. , et al. In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of beta2-glycoprotein I: proof of concept. J Thromb Haemost 2009; 7 (05) 833-842
  • 100 Ostertag MV, Liu X, Henderson V, Pierangeli SS. A peptide that mimics the Vth region of beta-2-glycoprotein I reverses antiphospholipid-mediated thrombosis in mice. Lupus 2006; 15 (06) 358-365
  • 101 Erkan D, Aguiar CL, Andrade D. , et al. 14th International Congress on Antiphospholipid Antibodies: task force report on antiphospholipid syndrome treatment trends. Autoimmun Rev 2014; 13 (06) 685-696
  • 102 Agostinis C, Durigutto P, Sblattero D. , et al. A non-complement-fixing antibody to β2 glycoprotein I as a novel therapy for antiphospholipid syndrome. Blood 2014; 123 (22) 3478-3487
  • 103 Kolyada A, Porter A, Beglova N. Inhibition of thrombotic properties of persistent autoimmune anti-β2GPI antibodies in the mouse model of antiphospholipid syndrome. Blood 2014; 123 (07) 1090-1097
  • 104 Chighizola CB, Raschi E, Borghi MO, Meroni PL. Update on the pathogenesis and treatment of the antiphospholipid syndrome. Curr Opin Rheumatol 2015; 27 (05) 476-482