Semin Neurol 2017; 37(05): 485-502
DOI: 10.1055/s-0037-1607310
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Functional Networks in Disorders of Consciousness

Yelena G. Bodien
1   Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts
2   Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
3   Harvard Medical School, Boston, Massachusetts
,
Camille Chatelle
1   Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts
4   Department of Neurology, Coma Science Group, GIGA-Research, University of Liège, University Hospital of Liège, Liège, Belgium
,
Brian L. Edlow
1   Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts
3   Harvard Medical School, Boston, Massachusetts
5   Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
05 December 2017 (online)

Abstract

Severe brain injury may cause disruption of neural networks that sustain arousal and awareness, the two essential components of consciousness. Despite the potentially devastating immediate and long-term consequences, disorders of consciousness (DoC) are poorly understood in terms of their underlying neurobiology, the relationship between pathophysiology and recovery, and the predictors of treatment efficacy. Recent advances in neuroimaging techniques have enabled the study of network connectivity, providing great potential to improve the clinical care of patients with DoC. Initial discoveries in this field were made using positron emission tomography (PET). More recently, functional magnetic resonance (fMRI) techniques have added to our understanding of functional network dynamics in this population. Both methods have shown that whether at rest or performing a goal-oriented task, functional networks essential for processing intrinsic thoughts and extrinsic stimuli are disrupted in patients with DoC compared with healthy subjects. Atypical connectivity has been well established in the default mode network as well as in other cortical and subcortical networks that may be required for consciousness. Moreover, the degree of altered connectivity may be related to the severity of impaired consciousness, and recovery of consciousness has been shown to be associated with restoration of connectivity. In this review, we discuss PET and fMRI studies of functional and effective connectivity in patients with DoC and suggest how this field can move toward clinical application of functional network mapping in the future.

 
  • References

  • 1 Laureys S, Goldman S, Phillips C. , et al. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 1999; 9 (04) 377-382
  • 2 Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, Maquet P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 2000; 355 (9217): 1790-1791
  • 3 Boly M, Faymonville ME, Peigneux P. , et al. Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 2004; 61 (02) 233-238
  • 4 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8 (09) 700-711
  • 5 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001; 98 (02) 676-682
  • 6 Shulman GL, Fiez JA, Corbetta M. , et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 1997; 9 (05) 648-663
  • 7 Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124 (01) 1-38
  • 8 Snyder AZ, Raichle ME. A brief history of the resting state: the Washington University perspective. Neuroimage 2012; 62 (02) 902-910
  • 9 Golland Y, Bentin S, Gelbard H. , et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb Cortex 2007; 17 (04) 766-777
  • 10 Vanhaudenhuyse A, Demertzi A, Schabus M. , et al. Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 2011; 23 (03) 570-578
  • 11 Cauda F, Micon BM, Sacco K. , et al. Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 2009; 80 (04) 429-431
  • 12 Soddu A, Vanhaudenhuyse A, Bahri MA. , et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum Brain Mapp 2012; 33 (04) 778-796
  • 13 Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ-F. , et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010; 133 (Pt 1): 161-171
  • 14 Wu X, Zou Q, Hu J. , et al. Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury. J Neurosci 2015; 35 (37) 12932-12946
  • 15 Silva S, de Pasquale F, Vuillaume C. , et al. Disruption of posteromedial large-scale neural communication predicts recovery from coma. Neurology 2015; 85 (23) 2036-2044
  • 16 Demertzi A, Antonopoulos G, Heine L. , et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain 2015; 138 (Pt 9): 2619-2631
  • 17 Qin P, Wu X, Huang Z. , et al. How are different neural networks related to consciousness?. Ann Neurol 2015; 78 (04) 594-605
  • 18 Brunetti M, Della Penna S, Ferretti A. , et al. A frontoparietal network for spatial attention reorienting in the auditory domain: a human fMRI/MEG study of functional and temporal dynamics. Cereb Cortex 2008; 18 (05) 1139-1147
  • 19 Boly M, Balteau E, Schnakers C. , et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci U S A 2007; 104 (29) 12187-12192
  • 20 Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005; 102 (27) 9673-9678
  • 21 Soddu A, Gómez F, Heine L. , et al. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness. Brain Behav 2015; 6 (01) e00424
  • 22 Sharp DJ, Beckmann CF, Greenwood R. , et al. Default mode network functional and structural connectivity after traumatic brain injury. Brain 2011; 134 (Pt 8): 2233-2247
  • 23 Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science 2013; 342 (6158): 1238411
  • 24 Khalsa S, Mayhew SD, Chechlacz M, Bagary M, Bagshaw AP. The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships. Neuroimage 2014; 102 (Pt 1): 118-127
  • 25 Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009; 19 (01) 72-78
  • 26 Fernández-Espejo D, Soddu A, Cruse D. , et al. A role for the default mode network in the bases of disorders of consciousness. Ann Neurol 2012; 72 (03) 335-343
  • 27 Cavaliere C, Aiello M, Di Perri C, Fernandez-Espejo D, Owen AM, Soddu A. Diffusion tensor imaging and white matter abnormalities in patients with disorders of consciousness. Front Hum Neurosci 2015; 8: 1028
  • 28 Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science 2006; 313 (5792): 1402
  • 29 Monti MM, Vanhaudenhuyse A, Coleman MR. , et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med 2010; 362 (07) 579-589
  • 30 Bender A, Jox RJ, Grill E, Straube A, Lulé D. Persistent vegetative state and minimally conscious state: a systematic review and meta-analysis of diagnostic procedures. Dtsch Arztebl Int 2015; 112 (14) 235-242
  • 31 Kondziella D, Friberg CK, Frokjaer VG, Fabricius M, Møller K. Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016; 87 (05) 485-492
  • 32 Laureys S, Schiff ND. Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 2012; 61 (02) 478-491
  • 33 Edlow BL, Giacino JT, Wu O. Functional MRI and outcome in traumatic coma. Curr Neurol Neurosci Rep 2013; 13 (09) 375
  • 34 Laureys S, Celesia GG, Cohadon F. , et al; European Task Force on Disorders of Consciousness. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 2010; 8 (01) 68
  • 35 Giacino JT, Ashwal S, Childs N. , et al. The minimally conscious state: definition and diagnostic criteria. Neurology 2002; 58 (03) 349-353
  • 36 Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (1). N Engl J Med 1994; 330 (21) 1499-1508
  • 37 Wislowska M, Giudice RD, Lechinger J. , et al. Night and day variations of sleep in patients with disorders of consciousness. Sci Rep 2017; 7 (01) 266
  • 38 Cologan V, Drouot X, Parapatics S. , et al. Sleep in the unresponsive wakefulness syndrome and minimally conscious state. J Neurotrauma 2013; 30 (05) 339-346
  • 39 Landsness E, Bruno MA, Noirhomme Q. , et al. Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state. Brain 2011; 134 (Pt 8): 2222-2232
  • 40 Bruno M-A, Vanhaudenhuyse A, Thibaut A, Moonen G, Laureys S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol 2011; 258 (07) 1373-1384
  • 41 Bruno MA, Majerus S, Boly M. , et al. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J Neurol 2012; 259 (06) 1087-1098
  • 42 Bauer G, Gerstenbrand F, Rumpl E. Varieties of the locked-in syndrome. J Neurol 1979; 221 (02) 77-91
  • 43 Laureys S, Pellas F, Van Eeckhout P. , et al. The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless?. Prog Brain Res 2005; 150: 495-511
  • 44 Piarulli A, Bergamasco M, Thibaut A, Cologan V, Gosseries O, Laureys S. EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness. J Neurol 2016; 263 (09) 1746-1760
  • 45 Majerus S, Bruno MA, Schnakers C, Giacino JT, Laureys S. The problem of aphasia in the assessment of consciousness in brain-damaged patients. Prog Brain Res 2009; 177: 49-61
  • 46 LøVStad M, Frøslie KF, Giacino JT, Skandsen T, Anke A, Schanke AK. Reliability and diagnostic characteristics of the JFK coma recovery scale-revised: exploring the influence of raterʼs level of experience. J Head Trauma Rehabil 2010; 25 (05) 349-356
  • 47 Childs NL, Mercer WN, Childs HW. Accuracy of diagnosis of persistent vegetative state. Neurology 1993; 43 (08) 1465-1467
  • 48 Andrews K, Murphy L, Munday R, Littlewood C. Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 1996; 313 (7048): 13-16
  • 49 Schnakers C, Vanhaudenhuyse A, Giacino J. , et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 2009; 9: 35
  • 50 Fins JJ. Rights Come to Mind: Brain Injury, Ethics, and the Struggle for Consciousness. New York, NY: Cambridge University Press; 2015
  • 51 Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004; 85 (12) 2020-2029
  • 52 Seel RT, Sherer M, Whyte J. , et al; American Congress of Rehabilitation Medicine, Brain Injury-Interdisciplinary Special Interest Group, Disorders of Consciousness Task Force. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil 2010; 91 (12) 1795-1813
  • 53 Schnakers C, Majerus S, Giacino J. , et al. A French validation study of the Coma Recovery Scale-Revised (CRS-R). Brain Inj 2008; 22 (10) 786-792
  • 54 Tamashiro M, Rivas ME, Ron M, Salierno F, Dalera M, Olmos L. A Spanish validation of the Coma Recovery Scale-Revised (CRS-R). Brain Inj 2014; 28 (13–14): 1744-1747
  • 55 Sacco S, Altobelli E, Pistarini C, Cerone D, Cazzulani B, Carolei A. Validation of the Italian version of the Coma Recovery Scale-Revised (CRS-R). Brain Inj 2011; 25 (05) 488-495
  • 56 Di H, Boly M, Weng X, Ledoux D, Laureys S. Neuroimaging activation studies in the vegetative state: predictors of recovery?. Clin Med (Lond) 2008; 8 (05) 502-507
  • 57 Coleman MR, Davis MH, Rodd JM. , et al. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 2009; 132 (Pt 9): 2541-2552
  • 58 Ogawa S, Tank DW, Menon R. , et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89 (13) 5951-5955
  • 59 Kwong KK, Belliveau JW, Chesler DA. , et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89 (12) 5675-5679
  • 60 Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34 (04) 537-541
  • 61 Lehembre R, Marie-Aurélie B, Vanhaudenhuyse A. , et al. Resting-state EEG study of comatose patients: a connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Funct Neurol 2012; 27 (01) 41-47
  • 62 Sitt JD, King JR, El Karoui I. , et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain 2014; 137 (Pt 8): 2258-2270
  • 63 King JR, Sitt JD, Faugeras F. , et al. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr Biol 2013; 23 (19) 1914-1919
  • 64 Chennu S, Finoia P, Kamau E. , et al. Spectral signatures of reorganised brain networks in disorders of consciousness. PLoS Comput Biol 2014; 10 (10) e1003887
  • 65 Boly M, Garrido MI, Gosseries O. , et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science 2011; 332 (6031): 858-862
  • 66 Lord V, Opacka-Juffry J. Electroencephalography (EEG) measures of neural connectivity in the assessment of brain responses to salient auditory stimuli in patients with disorders of consciousness. Front Psychol 2016; 7: 397
  • 67 Rosanova M, Gosseries O, Casarotto S. , et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 2012; 135 (Pt 4): 1308-1320
  • 68 de Pasquale F, Della Penna S, Snyder AZ. , et al. Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A 2010; 107 (13) 6040-6045
  • 69 Friston KJ. Functional and effective connectivity: a review. Brain Connect 2011; 1 (01) 13-36
  • 70 Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 1997; 6 (03) 218-229
  • 71 Whitfield-Gabrieli S, Moran JM, Nieto-Castañón A, Triantafyllou C, Saxe R, Gabrieli JDE. Associations and dissociations between default and self-reference networks in the human brain. Neuroimage 2011; 55 (01) 225-232
  • 72 Qin P, Northoff G. How is our self related to midline regions and the default-mode network?. Neuroimage 2011; 57 (03) 1221-1233
  • 73 Leech R, Kamourieh S, Beckmann CF, Sharp DJ. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci 2011; 31 (09) 3217-3224
  • 74 Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain's default network. Neuron 2010; 65 (04) 550-562
  • 75 Seeley WW, Menon V, Schatzberg AF. , et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27 (09) 2349-2356
  • 76 Yeo BT, Krienen FM, Sepulcre J. , et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106 (03) 1125-1165
  • 77 Rosazza C, Minati L. Resting-state brain networks: literature review and clinical applications. Neurol Sci 2011; 32 (05) 773-785
  • 78 Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front Syst Neurosci 2010; 4: 8
  • 79 Iraji A, Calhoun VD, Wiseman NM. , et al. The connectivity domain: Analyzing resting state fMRI data using feature-based data-driven and model-based methods. Neuroimage 2016; 134: 494-507
  • 80 Biswal BB, Mennes M, Zuo XN. , et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A 2010; 107 (10) 4734-4739
  • 81 Fischl B, van der Kouwe A, Destrieux C. , et al. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004; 14 (01) 11-22
  • 82 Makris N, Goldstein JM, Kennedy D. , et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 2006; 83 (2–3): 155-171
  • 83 Crone JS, Soddu A, Höller Y. , et al. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness. Neuroimage Clin 2013; 4: 240-248
  • 84 Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010; 52 (03) 1059-1069
  • 85 Phillips CL, Bruno MA, Maquet P. , et al. “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. Neuroimage 2011; 56 (02) 797-808
  • 86 Thibaut A, Bruno MA, Chatelle C. , et al. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J Rehabil Med 2012; 44 (06) 487-494
  • 87 Stender J, Kupers R, Rodell A. , et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab 2015; 35 (01) 58-65
  • 88 Di Perri C, Bahri MA, Amico E. , et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: a cross-sectional multimodal imaging study. Lancet Neurol 2016; 15 (08) 830-842
  • 89 Rosazza C, Andronache A, Sattin D. , et al. Multimodal study of default-mode network integrity in disorders of consciousness: DMN integrity in doc. Ann Neurol 2016; 79 (05) 841-853
  • 90 Demertzi A, Gómez F, Crone JS. , et al. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 2014; 52: 35-46
  • 91 Boly M, Tshibanda L, Vanhaudenhuyse A. , et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 2009; 30 (08) 2393-2400
  • 92 Norton L, Hutchison RM, Young GB, Lee DH, Sharpe MD, Mirsattari SM. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 2012; 78 (03) 175-181
  • 93 Horovitz SG, Fukunaga M, de Zwart JA. , et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 2008; 29 (06) 671-682
  • 94 Greicius MD, Kiviniemi V, Tervonen O. , et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 2008; 29 (07) 839-847
  • 95 Boly M, Phillips C, Tshibanda L. , et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?. Ann N Y Acad Sci 2008; 1129: 119-129
  • 96 Ovadia-Caro S, Nir Y, Soddu A. , et al. Reduction in inter-hemispheric connectivity in disorders of consciousness. PLoS One 2012; 7 (05) e37238
  • 97 He JH, Yang Y, Zhang Y. , et al. Hyperactive external awareness against hypoactive internal awareness in disorders of consciousness using resting-state functional MRI: highlighting the involvement of visuo-motor modulation. NMR Biomed 2014; 27 (08) 880-886
  • 98 Di Perri C, Bastianello S, Bartsch AJ. , et al. Limbic hyperconnectivity in the vegetative state. Neurology 2013; 81 (16) 1417-1424
  • 99 Boly M, Faymonville ME, Peigneux P. , et al. Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol Rehabil 2005; 15 (3–4): 283-289
  • 100 Boly M, Faymonville ME, Schnakers C. , et al. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol 2008; 7 (11) 1013-1020
  • 101 Laureys S, Faymonville ME, Degueldre C. , et al. Auditory processing in the vegetative state. Brain 2000; 123 (Pt 8): 1589-1601
  • 102 Laureys S, Faymonville ME, Peigneux P. , et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 2002; 17 (02) 732-741
  • 103 Kassubek J, Juengling FD, Els T. , et al. Activation of a residual cortical network during painful stimulation in long-term postanoxic vegetative state: a 15O-H2O PET study. J Neurol Sci 2003; 212 (1–2): 85-91
  • 104 Laureys S, Perrin F, Faymonville M-E. , et al. Cerebral processing in the minimally conscious state. Neurology 2004; 63 (05) 916-918
  • 105 Huang Z, Dai R, Wu X. , et al. The self and its resting state in consciousness: an investigation of the vegetative state. Hum Brain Mapp 2014; 35 (05) 1997-2008
  • 106 Kotchoubey B, Merz S, Lang S. , et al. Global functional connectivity reveals highly significant differences between the vegetative and the minimally conscious state. J Neurol 2013; 260 (04) 975-983
  • 107 De Pasquale F, Caravasso CF, Péran P. , et al. Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity. Funct Neurol 2015; 30 (03) 193-201
  • 108 Monti MM, Rosenberg M, Finoia P, Kamau E, Pickard JD, Owen AM. Thalamo-frontal connectivity mediates top-down cognitive functions in disorders of consciousness. Neurology 2015; 84 (02) 167-173
  • 109 Yao S, Song J, Gao L. , et al. Thalamocortical sensorimotor circuit damage associated with disorders of consciousness for diffuse axonal injury patients. J Neurol Sci 2015; 356 (1–2): 168-174
  • 110 Yang H, Long XY, Yang Y. , et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007; 36 (01) 144-152
  • 111 Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 2010; 33 (01) 1-9
  • 112 Crone JS, Lutkenhoff ES, Bio BJ, Laureys S, Monti MM. Testing proposed neuronal models of effective connectivity within the cortico-basal ganglia-thalamo-cortical loop during loss of consciousness. Cereb Cortex 2017; 27 (04) 2727-2738
  • 113 Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, Jbabdi S, Rogers R, Tracey I. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci 2010; 30 (27) 9095-9102
  • 114 Amico E, Marinazzo D, Di Perri C. , et al. Mapping the functional connectome traits of levels of consciousness. Neuroimage 2017; 148: 201-211
  • 115 Crone JS, Ladurner G, Höller Y, Golaszewski S, Trinka E, Kronbichler M. Deactivation of the default mode network as a marker of impaired consciousness: an fMRI study. PLoS One 2011; 6 (10) e26373
  • 116 Tononi G. Consciousness as integrated information: a provisional manifesto. Biol Bull 2008; 215 (03) 216-242
  • 117 Godwin D, Barry RL, Marois R. Breakdown of the brain's functional network modularity with awareness. Proc Natl Acad Sci U S A 2015; 112 (12) 3799-3804
  • 118 Bright MG, Tench CR, Murphy K. Potential pitfalls when denoising resting state fMRI data using nuisance regression. Neuroimage 2017; 154: 159-168
  • 119 Cavaliere C, Aiello M, Di Perri C. , et al. Functional connectivity substrates for tdcs response in minimally conscious state patients. Front Cell Neurosci 2016; 10: 257
  • 120 Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012; 59 (01) 431-438
  • 121 Goto M, Abe O, Miyati T, Yamasue H, Gomi T, Takeda T. Head motion and correction methods in resting-state functional MRI. Magn Reson Med Sci 2016; 15 (02) 178-186
  • 122 Kirsch M, Guldenmund P, Ali Bahri M. , et al. Sedation of patients with disorders of consciousness during neuroimaging: effects on resting state functional brain connectivity. Anesth Analg 2017; 124 (02) 588-598
  • 123 Boveroux P, Vanhaudenhuyse A, Bruno MA. , et al. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010; 113 (05) 1038-1053
  • 124 Edlow BL, Wu O. Advanced neuroimaging in traumatic brain injury. Semin Neurol 2012; 32 (04) 374-400
  • 125 Edlow BL, Takahashi E, Wu O. , et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol 2012; 71 (06) 531-546
  • 126 Brooks JC, Faull OK, Pattinson KT, Jenkinson M. Physiological noise in brainstem FMRI. Front Hum Neurosci 2013; 7: 623
  • 127 Beissner F, Schumann A, Brunn F, Eisenträger D, Bär KJ. Advances in functional magnetic resonance imaging of the human brainstem. Neuroimage 2014; 86: 91-98
  • 128 Bär KJ, de la Cruz F, Schumann A. , et al. Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage 2016; 134: 53-63
  • 129 Bianciardi M, Toschi N, Eichner C. , et al. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI. MAGMA 2016; 29 (03) 451-462
  • 130 Annen J, Heine L, Ziegler E. , et al. Function-structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET. Hum Brain Mapp 2016; 37 (11) 3707-3720
  • 131 Stender J, Gosseries O, Bruno MA. , et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 2014; 384 (9942): 514-522
  • 132 Fischl B. FreeSurfer. Neuroimage 2012; 62 (02) 774-781
  • 133 Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2012; 2 (03) 125-141