Semin Neurol 2017; 37(05): 546-557
DOI: 10.1055/s-0037-1608715
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

TSPO-PET Imaging to Assess Cerebral Microglial Activation in Multiple Sclerosis

Tarun Singhal
1   Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
,
Howard L. Weiner
1   Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
,
Rohit Bakshi
1   Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
2   Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
05 December 2017 (online)

Abstract

The adaptive immune system, particularly T cells and more recently B cells, is considered to play a major role in the pathogenesis of multiple sclerosis (MS). In addition to adaptive immune mechanisms, innate central nervous system (CNS) immunity, particularly mediated by microglia, may play a key role in MS pathogenesis. Microglial activation has been demonstrated throughout the MS disease course and at various locations in the CNS, including white and gray matter lesions as well as normal appearing white and gray matter. Activated microglia overexpress an 18 kilodalton mitochondrial translocator protein (TSPO), which is otherwise expressed at low levels during the resting state. Several positron emission tomography (PET) ligands targeting TSPO have been developed to enable the assessment of microglial activation. In this article, we review the biological basis, methodological aspects, and current status of TSPO-PET imaging in MS and discuss future research directions.

Funding

This work was supported by research grants from the Race to Erase MS foundation and the Harvard NeuroDiscovery Center.


 
  • References

  • 1 Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet 2017; 389 (10076): 1336-1346
  • 2 Weiner HL. The challenge of multiple sclerosis: how do we cure a chronic heterogeneous disease?. Ann Neurol 2009; 65 (03) 239-248
  • 3 Bakshi R, Thompson AJ, Rocca MA. , et al. MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 2008; 7 (07) 615-625
  • 4 Polman CH, Reingold SC, Banwell B. , et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69 (02) 292-302
  • 5 Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006; 5 (02) 158-170
  • 6 McFarland HF. The B cell--old player, new position on the team. N Engl J Med 2008; 358 (07) 664-665
  • 7 McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 2007; 8 (09) 913-919
  • 8 Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 2010; 221 (1–2): 7-14
  • 9 Quintana FJ, Farez MF, Weiner HL. Systems biology approaches for the study of multiple sclerosis. J Cell Mol Med 2008; 12 (04) 1087-1093
  • 10 Agnello D, Carvelli L, Muzio V. , et al. Increased peripheral benzodiazepine binding sites and pentraxin 3 expression in the spinal cord during EAE: relation to inflammatory cytokines and modulation by dexamethasone and rolipram. J Neuroimmunol 2000; 109 (02) 105-111
  • 11 Papadopoulos V, Baraldi M, Guilarte TR. , et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006; 27 (08) 402-409
  • 12 Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000; 41 (04) 661-681
  • 13 Cherry SR, Sorensen JA, Phelps ME. Physics in Nuclear Medicine. Philadelphia, PA: Elsevier Health Sciences; 2012: 267-268
  • 14 Jones T, Rabiner EA. ; PET Research Advisory Company. The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab 2012; 32 (07) 1426-1454
  • 15 Singhal T. Positron emission tomography applications in clinical neurology. Semin Neurol 2012; 32 (04) 421-431
  • 16 Singhal T, Alavi A, Kim CK. Brain: positron emission tomography tracers beyond [18F]fluorodeoxyglucose. PET Clin 2014; 9 (03) 267-276
  • 17 Bakshi R, Miletich RS, Kinkel PR, Emmet ML, Kinkel WR. High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging 1998; 8 (04) 228-234
  • 18 Niccolini F, Su P, Politis M. PET in multiple sclerosis. Clin Nucl Med 2015; 40 (01) e46-e52
  • 19 Airas L, Rissanen E, Rinne J. Imaging of microglial activation in MS using PET: research use and potential future clinical application. Mult Scler 2017; 23 (04) 496-504
  • 20 Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci U S A 1977; 74 (09) 3805-3809
  • 21 Gavish M, Bachman I, Shoukrun R. , et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev 1999; 51 (04) 629-650
  • 22 Gallager DW, Mallorga P, Oertel W, Henneberry R, Tallman J. [3H]Diazepam binding in mammalian central nervous system: a pharmacological characterization. J Neurosci 1981; 1 (02) 218-225
  • 23 Schoemaker H, Morelli M, Deshmukh P, Yamamura HI. [3H]Ro5-4864 benzodiazepine binding in the kainate lesioned striatum and Huntington's diseased basal ganglia. Brain Res 1982; 248 (02) 396-401
  • 24 Le Fur G, Guilloux F, Rufat P. , et al. Peripheral benzodiazepine binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-methyl-(1-methylpropyl)-3 isoquinolinecarboxamide. II. In vivo studies. Life Sci 1983; 32 (16) 1849-1856
  • 25 Le Fur G, Perrier ML, Vaucher N. , et al. Peripheral benzodiazepine binding sites: effect of PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide. I. In vitro studies. Life Sci 1983; 32 (16) 1839-1847
  • 26 Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008; 35 (12) 2304-2319
  • 27 Scarf AM, Ittner LM, Kassiou M. The translocator protein (18 kDa): central nervous system disease and drug design. J Med Chem 2009; 52 (03) 581-592
  • 28 Jaremko L, Jaremko M, Giller K, Becker S, Zweckstetter M. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 2014; 343 (6177): 1363-1366
  • 29 Kreisl WC, Lawrence R, Page E. , et al. (11)C-PBR28 PET detects translocator protein in a patient with astrocytoma and Alzheimer disease. Neurology 2017; 88 (10) 1001-1004
  • 30 Cosenza-Nashat M, Zhao ML, Suh HS. , et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009; 35 (03) 306-328
  • 31 Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 1995; 15 (7 Pt 2): 5263-5274
  • 32 Banati RB, Newcombe J, Gunn RN. , et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000; 123 (Pt 11): 2321-2337
  • 33 Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)--binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997; 26 (02) 77-82
  • 34 Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RS, Cremer JE. Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat cerebral cortex following a local ischaemic lesion. J Cereb Blood Flow Metab 1991; 11 (02) 314-322
  • 35 Bae KR, Shim HJ, Balu D, Kim SR, Yu SW. Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol 2014; 9 (03) 424-437
  • 36 Venneti S, Lopresti BJ, Wiley CA. Molecular imaging of microglia/macrophages in the brain. Glia 2013; 61 (01) 10-23
  • 37 Abourbeh G, Thézé B, Maroy R. , et al. Imaging microglial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by positron emission tomography using the mitochondrial 18 kDa translocator protein radioligand [18F]DPA-714. J Neurosci 2012; 32 (17) 5728-5736
  • 38 Wilhelmsson U, Andersson D, de Pablo Y. , et al. Injury leads to the appearance of cells with characteristics of both microglia and astrocytes in mouse and human brain. Cereb Cortex 2017; 27 (06) 3360-3377
  • 39 Liu B, Le KX, Park MA. , et al. In Vivo Detection of Age- and Disease-Related Increases in Neuroinflammation by 18F-GE180 TSPO MicroPET Imaging in Wild-Type and Alzheimer's Transgenic Mice. J Neurosci 2015; 35 (47) 15716-15730
  • 40 Ransohoff RM. A polarizing question: do M1 and M2 microglia exist?. Nat Neurosci 2016; 19 (08) 987-991
  • 41 Michell-Robinson MA, Touil H, Healy LM. , et al. Roles of microglia in brain development, tissue maintenance and repair. Brain 2015; 138 (Pt 5): 1138-1159
  • 42 Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19 (08) 312-318
  • 43 Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8 (11) 647-656
  • 44 Kutzelnigg A, Lassmann H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol 2014; 122: 15-58
  • 45 van der Valk P, De Groot CJ. Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 2000; 26 (01) 2-10
  • 46 Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 2017; 133 (01) 13-24
  • 47 Frischer JM, Weigand SD, Guo Y. , et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 2015; 78 (05) 710-721
  • 48 Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ. Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity?. Brain 2007; 130 (Pt 11): 2800-2815
  • 49 De Groot CJ, Bergers E, Kamphorst W. , et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 2001; 124 (Pt 8): 1635-1645
  • 50 Barkhof F, Bruck W, De Groot CJ. , et al. Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 2003; 60 (08) 1073-1081
  • 51 van Horssen J, Singh S, van der Pol S. , et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 2012; 9: 156
  • 52 Prineas JW, Kwon EE, Cho ES. , et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 2001; 50 (05) 646-657
  • 53 Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 2015; 16 (03) 147-158
  • 54 Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001; 50 (03) 389-400
  • 55 Vowinckel E, Reutens D, Becher B. , et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 1997; 50 (02) 345-353
  • 56 Turkheimer FE, Edison P, Pavese N. , et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J Nucl Med 2007; 48 (01) 158-167
  • 57 Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006; 80 (06) 308-322
  • 58 Owen DR, Guo Q, Kalk NJ. , et al. Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab 2014; 34 (06) 989-994
  • 59 Ikawa M, Lohith TG, Shrestha S. , et al; Biomarkers Consortium Radioligand Project Team. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med 2017; 58 (02) 320-325
  • 60 Hannestad J, DellaGioia N, Gallezot JD. , et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav Immun 2013; 33: 131-138
  • 61 Herranz E, Giannì C, Louapre C. , et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann Neurol 2016; 80 (05) 776-790
  • 62 Loggia ML, Chonde DB, Akeju O. , et al. Evidence for brain glial activation in chronic pain patients. Brain 2015; 138 (Pt 3): 604-615
  • 63 Owen DR, Gunn RN, Rabiner EA. , et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 2011; 52 (01) 24-32
  • 64 Owen DR, Yeo AJ, Gunn RN. , et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012; 32 (01) 1-5
  • 65 Couturier O, Luxen A, Chatal JF, Vuillez JP, Rigo P, Hustinx R. Fluorinated tracers for imaging cancer with positron emission tomography. Eur J Nucl Med Mol Imaging 2004; 31 (08) 1182-1206
  • 66 Fujimura Y, Zoghbi SS, Simèon FG. , et al. Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand, (18)F-PBR06. J Nucl Med 2009; 50 (07) 1047-1053
  • 67 Dickstein LP, Zoghbi SS, Fujimura Y. , et al. Comparison of 18F- and 11C-labeled aryloxyanilide analogs to measure translocator protein in human brain using positron emission tomography. Eur J Nucl Med Mol Imaging 2011; 38 (02) 352-357
  • 68 James ML, Belichenko NP, Nguyen TV. , et al. PET imaging of translocator protein (18 kDa) in a mouse model of Alzheimer's disease using N-(2,5-dimethoxybenzyl)-2-18F-fluoro-N-(2-phenoxyphenyl)acetamide. J Nucl Med 2015; 56 (02) 311-316
  • 69 Lartey FM, Ahn GO, Shen B. , et al. PET imaging of stroke-induced neuroinflammation in mice using [18F]PBR06. Mol Imaging Biol 2014; 16 (01) 109-117
  • 70 Fujimura Y, Kimura Y, Siméon FG. , et al. Biodistribution and radiation dosimetry in humans of a new PET ligand, (18)F-PBR06, to image translocator protein (18 kDa). J Nucl Med 2010; 51 (01) 145-149
  • 71 Singhal TOK, Chu R, Tauhid S. , et al. Assessing microglial activation in multiple sclerosis using [F-18]PBR06 Positron Emission Tomography. Paper presented at ACTRIMS; February 23–25, 2017; Orlando, Florida
  • 72 Brown AK, Fujita M, Fujimura Y. , et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J Nucl Med 2007; 48 (12) 2072-2079
  • 73 Takano A, Piehl F, Hillert J. , et al. In vivo TSPO imaging in patients with multiple sclerosis: a brain PET study with [18F]FEDAA1106. EJNMMI Res 2013; 3 (01) 30
  • 74 Datta G, Colasanti A, Kalk N. , et al. (11)C-PBR28 and (18)F-PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis. J Nucl Med 2017; 58 (09) 1477-1482
  • 75 Colasanti A, Guo Q, Muhlert N. , et al. In vivo assessment of brain white matter inflammation in multiple sclerosis with (18)F-PBR111 PET. J Nucl Med 2014; 55 (07) 1112-1118
  • 76 Giannetti P, Politis M, Su P. , et al. Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)C](R)-PK11195-PET pilot study. Neurobiol Dis 2014; 65: 203-210
  • 77 Rissanen E, Tuisku J, Rokka J. , et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand 11C-PK11195. J Nucl Med 2014; 55 (06) 939-944
  • 78 Politis M, Giannetti P, Su P. , et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 2012; 79 (06) 523-530
  • 79 Versijpt J, Debruyne JC, Van Laere KJ. , et al. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler 2005; 11 (02) 127-134
  • 80 Politis M, Su P, Piccini P. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 2012; 3: 96
  • 81 Giannetti P, Politis M, Su P. , et al. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain 2015; 138 (Pt 1): 110-119
  • 82 Ratchford JN, Endres CJ, Hammoud DA. , et al. Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 2012; 259 (06) 1199-1205
  • 83 Sucksdorff M, Rissanen E, Tuisku J. , et al. Evaluation of the effect of fingolimod treatment on microglial activation using serial PET imaging in multiple sclerosis. J Nucl Med 2017; 58 (10) 1646-1651
  • 84 Kaunzner U, Kang Y, Monahan E. , et al. Longitudinal analysis of natalizumab treated multiple sclerosis (MS) patients using PK11195-PET demonstrates reduced CNS inflammation. Vancouver, BC, Canada: American Academy of Neurology; 2016
  • 85 Innis RB, Cunningham VJ, Delforge J. , et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27 (09) 1533-1539
  • 86 Oh U, Fujita M, Ikonomidou VN. , et al. Translocator protein PET imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol 2011; 6 (03) 354-361
  • 87 Datta G, Violante IR, Scott G. , et al. Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis. Mult Scler 2017; 23 (11) 1469-1478
  • 88 Colasanti A, Guo Q, Giannetti P. , et al. Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis. Biol Psychiatry 2016; 80 (01) 62-72
  • 89 Herzog H, Lerche C. Advances in clinical PET/MRI instrumentation. PET Clin 2016; 11 (02) 95-103
  • 90 Rusjan PM, Wilson AA, Miler L. , et al. Kinetic modeling of the monoamine oxidase B radioligand [11C]SL25.1188 in human brain with high-resolution positron emission tomography. J Cereb Blood Flow Metab 2014; 34 (05) 883-889
  • 91 Matthews PM, Datta G. Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis. Expert Opin Drug Discov 2015; 10 (05) 557-570
  • 92 Park E, Gallezot JD, Delgadillo A. , et al. (11)C-PBR28 imaging in multiple sclerosis patients and healthy controls: test-retest reproducibility and focal visualization of active white matter areas. Eur J Nucl Med Mol Imaging 2015; 42 (07) 1081-1092