Semin Neurol 2017; 37(05): 566-579
DOI: 10.1055/s-0037-1608765
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Advances in Neuro-Ophthalmic Imaging

Marc A. Bouffard
1   Division of Neuro-Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
,
Sashank Prasad
2   Division of Neuro-Ophthalmology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
05 December 2017 (online)

Abstract

Recent years have brought a rapid evolution of diagnostic imaging studies in neuro-ophthalmic practice. Optical coherence tomography (OCT) and several of its derivations (swept-source OCT, enhanced-depth imaging OCT, and OCT-angiography) are advancing diagnosis, and in some cases prognostication, in a variety of inflammatory, ischemic, and compressive optic neuropathies. These technologies hold potential in the laboratory as well, yielding insights into the mechanisms of a variety of neurological conditions. In addition, further developments in magnetic resonance imaging and ultrasonography techniques are shaping the approach to the diagnosis of giant cell arteritis.

 
  • References

  • 1 Huang D, Swanson EA, Lin CP. , et al. Optical coherence tomography. Science 1991; 254 (5035): 1178-1181
  • 2 Murthy RK, Haji S, Sambhav K, Grover S, Chalam KV. Clinical applications of spectral domain optical coherence tomography in retinal diseases. Biomed J 2016; 39 (02) 107-120
  • 3 Chen JJ, Kardon RH. Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer. J Neuroophthalmol 2016; 36 (04) 417-438
  • 4 Mohammad Salih PA. Evaluation of peripapillary retinal nerve fiber layer thickness in myopic eyes by spectral-domain optical coherence tomography. J Glaucoma 2012; 21 (01) 41-44
  • 5 Spaide RF, Klancnik Jr JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133 (01) 45-50
  • 6 Frisén L, Hoyt WF. Insidious atrophy of retinal nerve fibers in multiple sclerosis. Funduscopic identification in patients with and without visual complaints. Arch Ophthalmol 1974; 92 (02) 91-97
  • 7 Fisher JB, Jacobs DA, Markowitz CE. , et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006; 113 (02) 324-332
  • 8 Ratchford JN, Saidha S, Sotirchos ES. , et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology 2013; 80 (01) 47-54
  • 9 Manogaran P, Traboulsee AL, Lange AP. Longitudinal study of retinal nerve fiber layer thickness and macular volume in patients with neuromyelitis optica spectrum disorder. J Neuroophthalmol 2016; 36 (04) 363-368
  • 10 Ratchford JN, Quigg ME, Conger A. , et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 2009; 73 (04) 302-308
  • 11 Lange AP, Sadjadi R, Zhu F, Alkabie S, Costello F, Traboulsee AL. Spectral-domain optical coherence tomography of retinal nerve fiber layer thickness in NMO patients. J Neuroophthalmol 2013; 33 (03) 213-219
  • 12 Bichuetti DB, de Camargo AS, Falcão AB, Gonçalves FF, Tavares IM, de Oliveira EM. The retinal nerve fiber layer of patients with neuromyelitis optica and chronic relapsing optic neuritis is more severely damaged than patients with multiple sclerosis. J Neuroophthalmol 2013; 33 (03) 220-224
  • 13 Hayreh SS, Podhajsky PA, Zimmerman B. Ocular manifestations of giant cell arteritis. Am J Ophthalmol 1998; 125 (04) 509-520
  • 14 Caselli RJ, Hunder GG, Whisnant JP. Neurologic disease in biopsy-proven giant cell (temporal) arteritis. Neurology 1988; 38 (03) 352-359
  • 15 Hayreh SS, Podhajsky PA, Zimmerman B. Occult giant cell arteritis: ocular manifestations. Am J Ophthalmol 1998; 125 (04) 521-526
  • 16 Gonzalez-Gay MA, Garcia-Porrua C, Llorca J, Gonzalez-Louzao C, Rodriguez-Ledo P. Biopsy-negative giant cell arteritis: clinical spectrum and predictive factors for positive temporal artery biopsy. Semin Arthritis Rheum 2001; 30 (04) 249-256
  • 17 Aschwanden M, Imfeld S, Staub D. , et al. The ultrasound compression sign to diagnose temporal giant cell arteritis shows an excellent interobserver agreement. Clin Exp Rheumatol 2015; 33 (02) (Suppl. 89) S-113-S-115
  • 18 Buttgereit F, Dejaco C, Matteson EL, Dasgupta B. Polymyalgia rheumatica and giant cell arteritis: a systematic review. JAMA 2016; 315 (22) 2442-2458
  • 19 Karahaliou M, Vaiopoulos G, Papaspyrou S, Kanakis MA, Revenas K, Sfikakis PP. Colour duplex sonography of temporal arteries before decision for biopsy: a prospective study in 55 patients with suspected giant cell arteritis. Arthritis Res Ther 2006; 8 (04) R116
  • 20 Habib HM, Essa AA, Hassan AA. Color duplex ultrasonography of temporal arteries: role in diagnosis and follow-up of suspected cases of temporal arteritis. Clin Rheumatol 2012; 31 (02) 231-237
  • 21 LeSar CJ, Meier GH, DeMasi RJ. , et al. The utility of color duplex ultrasonography in the diagnosis of temporal arteritis. J Vasc Surg 2002; 36 (06) 1154-1160
  • 22 Nesher G, Shemesh D, Mates M, Sonnenblick M, Abramowitz HB. The predictive value of the halo sign in color Doppler ultrasonography of the temporal arteries for diagnosing giant cell arteritis. J Rheumatol 2002; 29 (06) 1224-1226
  • 23 Romera-Villegas A, Vila-Coll R, Poca-Dias V, Cairols-Castellote MA. The role of color duplex sonography in the diagnosis of giant cell arteritis. J Ultrasound Med 2004; 23 (11) 1493-1498
  • 24 Reinhard M, Schmidt D, Hetzel A. Color-coded sonography in suspected temporal arteritis-experiences after 83 cases. Rheumatol Int 2004; 24 (06) 340-346
  • 25 Diamantopoulos AP, Haugeberg G, Hetland H, Soldal DM, Bie R, Myklebust G. Diagnostic value of color Doppler ultrasonography of temporal arteries and large vessels in giant cell arteritis: a consecutive case series. Arthritis Care Res (Hoboken) 2014; 66 (01) 113-119
  • 26 Aschwanden M, Daikeler T, Kesten F. , et al. Temporal artery compression sign--a novel ultrasound finding for the diagnosis of giant cell arteritis. Ultraschall Med 2013; 34 (01) 47-50
  • 27 Schmidt WA, Kraft HE, Vorpahl K, Völker L, Gromnica-Ihle EJ. Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med 1997; 337 (19) 1336-1342
  • 28 Geiger J, Bley T, Uhl M, Frydrychowicz A, Langer M, Markl M. Diagnostic value of T2-weighted imaging for the detection of superficial cranial artery inflammation in giant cell arteritis. J Magn Reson Imaging 2010; 31 (02) 470-474
  • 29 Bley TA, Weiben O, Uhl M. , et al. Assessment of the cranial involvement pattern of giant cell arteritis with 3T magnetic resonance imaging. Arthritis Rheum 2005; 52 (08) 2470-2477
  • 30 Bley TA, Uhl M, Carew J. , et al. Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol 2007; 28 (09) 1722-1727
  • 31 Klink T, Geiger J, Both M. , et al. Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial. Radiology 2014; 273 (03) 844-852
  • 32 Veldhoen S, Klink T, Geiger J. , et al. MRI displays involvement of the temporalis muscle and the deep temporal artery in patients with giant cell arteritis. Eur Radiol 2014; 24 (11) 2971-2979
  • 33 Boyev LR, Miller NR, Green WR. Efficacy of unilateral versus bilateral temporal artery biopsies for the diagnosis of giant cell arteritis. Am J Ophthalmol 1999; 128 (02) 211-215
  • 34 Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med 2000; 108 (03) 246-249
  • 35 Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 2008; 49 (05) 1879-1885
  • 36 Danesh-Meyer HV, Wong A, Papchenko T. , et al. Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 2015; 22 (07) 1098-1104
  • 37 Johnson LN, Diehl ML, Hamm CW, Sommerville DN, Petroski GF. Differentiating optic disc edema from optic nerve head drusen on optical coherence tomography. Arch Ophthalmol 2009; 127 (01) 45-49
  • 38 Flores-Rodríguez P, Gili P, Martín-Ríos MD. Sensitivity and specificity of time-domain and spectral-domain optical coherence tomography in differentiating optic nerve head drusen and optic disc oedema. Ophthalmic Physiol Opt 2012; 32 (03) 213-221
  • 39 Sarac O, Tasci YY, Gurdal C, Can I. Differentiation of optic disc edema from optic nerve head drusen with spectral-domain optical coherence tomography. J Neuroophthalmol 2012; 32 (03) 207-211
  • 40 Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008; 146 (04) 496-500
  • 41 Sato T, Mrejen S, Spaide RF. Multimodal imaging of optic disc drusen. Am J Ophthalmol 2013; 156 (02) 275-282.e1
  • 42 Merchant KY, Su D, Park SC. , et al. Enhanced depth imaging optical coherence tomography of optic nerve head drusen. Ophthalmology 2013; 120 (07) 1409-1414
  • 43 Bodis-Wollner I, Yahr MD. Measurements of visual evoked potentials in Parkinson's disease. Brain 1978; 101 (04) 661-671
  • 44 Hajee ME, March WF, Lazzaro DR. , et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; 127 (06) 737-741
  • 45 Sari ES, Koc R, Yazici A, Sahin G, Ermis SS. Ganglion cell-inner plexiform layer thickness in patients with Parkinson disease and association with disease severity and duration. J Neuroophthalmol 2015; 35 (02) 117-121
  • 46 den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer's disease: a systematic review and meta-analysis. Alzheimers Dement (Amst) 2017; 6: 162-170
  • 47 Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer's disease. Eur Neurol 2002; 47 (03) 165-168
  • 48 de Voogd S, Ikram MK, Wolfs RC, Jansonius NM, Hofman A, de Jong PT. Incidence of open-angle glaucoma in a general elderly population: the Rotterdam Study. Ophthalmology 2005; 112 (09) 1487-1493
  • 49 Wolfs RC, Borger PH, Ramrattan RS. , et al. Changing views on open-angle glaucoma: definitions and prevalences--the Rotterdam Study. Invest Ophthalmol Vis Sci 2000; 41 (11) 3309-3321
  • 50 Ferrari L, Huang SC, Magnani G, Ambrosi A, Comi G, Leocani L. Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal and Alzheimer's disease. J Alzheimers Dis 2017; 56 (03) 1101-1107
  • 51 Akbari M, Abdi P, Fard MA. , et al. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 2016; 36 (02) 141-146
  • 52 Sharma S, Ang M, Najjar RP. , et al. Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 2017; 101 (08) 1045-1051
  • 53 Wright Mayes E, Cole ED, Dang S. , et al. Optical coherence tomography angiography in nonarteritic ischemic optic neuropathy. J Neuroophthalmol 2017; 37: 358-364
  • 54 Rougier MB, Delyfer MN, Korobelnik JF. OCT angiography of acute non-arteritic anterior ischemic optic neuropathy. J Fr Ophtalmol 2017; 40 (02) 102-109