Thromb Haemost 2000; 84(01): 104-111
DOI: 10.1055/s-0037-1613976
Commentary
Schattauer GmbH

Role of the Leucine-Rich Domain of Platelet GPIbα in Correct Post-translational Processing – The Nancy I Bernard-Soulier Mutation Expressed on CHO Cells

Authors

  • Philippe Ulsemer

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • François Lanza

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Marie-Jeanne Baas

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Agnès Schwartz

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Catherine Ravanat

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Marie-Elisabeth Briquel

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Sue Cranmer

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Shaun Jackson

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Jean-Pierre Cazenave

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia
  • Corinne de la Salle

    1   From INSERM U311, Etablissement Français du Sang-Alsace, Strasbourg, France; CHU Nancy, France; Monash University, Box Hill, Australia

The authors thank Professor Danièle Sommelet for follow-up of the patients and Juliette Mulvihill for reviewing the English of the manuscript.
Further Information

Publication History

Received 11 August 1999

Accepted after revision 24 February 2000

Publication Date:
10 December 2017 (online)

Preview

Summary

The mechanisms governing the biosynthesis and surface expression of platelet adhesive receptors on parent megakaryocytes are as yet poorly understood. In particular, the assembly and processing of the multisubunit glycoprotein (GP) Ib-IX-V complex, a receptor for von Willebrand factor (vWf) is not fully understood. In the present work, these questions were addressed by reproducing a natural mutation of GPIbα found in a variant case of Bernard-Soulier syndrome (Nancy I), due to the deletion of leucine 179 in the seventh leucine-rich repeat of the polypeptide. Wild type and mutated GPIbα were transfected into CHO cells expressing GPIbβ and GPIX. Flow cytometry showed surface expression of the three subunits of both GPIb-IX complexes, but GPIbαΔLeu was present at lower levels (20-40%) and was recognized only by a sub class of monoclonal antibodies which epitopes were not modified by the mutation. These properties reproduce the defect found in the patient’s platelets, demonstrating the causative nature of the mutation and validate the use of the CHO cells model. Biochemical studies were performed in an attempt to elucidate the mechanism of the conformational change of GPIbαΔLeu. They unexpectedly revealed a major glycosylation deficiency of the mutated GPIbα leading to a 40% decrease in molecular weight. The other two subunits of the complex were however normal and present at the plasma membrane. The deletion led to complete functional deficiency with lack of vWf binding of CHOαΔLeu transfected cells in the presence of botrocetin and defective adhesion to a vWf coated surface under static conditions. Finally, in contrast to normal CHOαβIX cells, which displayed rolling and deceleration when perfused over a vWf surface, CHOαΔLeuβIX cells were unable to roll over or attach to a vWf substratum. These results show that the integrity of the leucine-rich region of GPIbα is essential for normal processing and function of the GPIb-IX complex. In addition, these results obtained in a cellular system supported the suspected role of the macroglycopeptide region of GPIbα in maintaining a suitable conformation of this multisubunit receptor to perform its adhesive function.