Thromb Haemost 1998; 79(05): 949-954
DOI: 10.1055/s-0037-1615100
Review Article
Schattauer GmbH

Factor V Leiden (G1691A), the Prothrombin 3’-Untranslated Region Variant (G20210A) and Thermolabile Methylenetetrahydrofolate Reductase (C677T): A Single Genetic Test Genotypes all Three Loci – Determination of Frequencies in the S. Wales Population of the UK

D. J. Bowen
1   From the Arthur Bloom Haemophilia Center, Department of Haematology, University of Wales College of Medicine, Cardiff, S. Wales, UK
,
S. Bowley
1   From the Arthur Bloom Haemophilia Center, Department of Haematology, University of Wales College of Medicine, Cardiff, S. Wales, UK
,
M. John
1   From the Arthur Bloom Haemophilia Center, Department of Haematology, University of Wales College of Medicine, Cardiff, S. Wales, UK
,
P. W. Collins
1   From the Arthur Bloom Haemophilia Center, Department of Haematology, University of Wales College of Medicine, Cardiff, S. Wales, UK
› Author Affiliations
Further Information

Publication History

Received 18 November 1997

Accepted after revision 20 January 1998

Publication Date:
07 December 2017 (online)

Summary

Simultaneous genetic diagnosis of factor V (FV) Leiden (G1691A), the prothrombin variant (G20210A) and the thermolabile methylenetetrahydrofolate reductase (MTHFR) variant (C677T) has been achieved using multiplex heteroduplex analysis. All three loci are amplified in a single polymerase chain reaction (PCR) containing test DNA and three heteroduplex generators, respectively detecting the three nucleotide substitutions. After PCR, the products are analysed directly without further manipulation and the resulting heteroduplex profiles permit straightforward interpretation of the respective genotypes. The multiplex test has been used to assess the prevalence and allele frequency of each of the three nucleotide substitutions in 300 individuals (150 males and 150 females) from the local (S. Wales) population. A prevalence of 8% and an allele frequency of 0.040 ± 0.015 (95% confidence interval) was obtained for FV Leiden; the prothrombin variant showed a prevalence of 1% and an allele frequency of 0.007 ± 0.006 (95% confidence interval); the MTHFR mutation showed a prevalence of 60% and an allele frequency of 0.377 ± 0.039 (95% confidence interval). This method is applicable to investigation of large cohorts of patients with arterial or venous thrombotic disease.

 
  • References

  • 1 Zoller B, Hillarp A, Berntorp E, Dahlbäck B. Activated protein C resistance due to a common factor V gene mutation is a major risk factor for venous thrombosis. Annual Rev Med 1997; 48: 45-58.
  • 2 Rosendaal FR, Koster T, Vandenbroucke JP, Reitsma PH. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995; 85: 1504-8.
  • 3 Helmerhorst FM, Bloemenkamp KWM, Rosendaal FR, Vandenbroucke JP. Oral contaceptives and thrombotic disease: risk of venous thromboembolism. Thromb Haemost 1997; 78: 327-33.
  • 4 Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698-703.
  • 5 Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP. Mutation in the gene coding for coagulation factor V and risk of myocardial infarction, stroke and venous thrombosis in apparently healthy men. New Engl J Med 1995; 332: 912-7.
  • 6 Rosendaal FR, Siscovick DS, Schwartz SM, Beverley RK, Psaty BM, Longstrength WT, Raghunathan TE, Koepsell TD, Reitsma PH. Factor V Leiden (resistance to activated protein C) increases the risk of myocardial infarction in young women. Blood 1997; 89: 2817-21.
  • 7 Rosendaal FR, Siscovick DS, Schwartz SM, Psaty BM, Raghunathan TE, Vos HL. A common prothrombin variant (20210 G to A) increases the risk of myocardial infarction in young women. Blood 1997; 90: 1747-50.
  • 8 Boers GHJ. Hyperhomocysteinemia as a risk factor for arterial and venous disease. A review of evidence and relevance. Thromb Haemost 1997; 78: 520-2.
  • 9 Den Heijer M, Koster T, Blom HJ, Bos GMJ, Briët E, Reitsma PH, Vandenbroucke JP, Rosendaal FR. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. New Engl J Med 1996; 334: 759-62.
  • 10 Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van den Heuvel LP, Rozen R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genetics 1995; 10: 111-3.
  • 11 Morita H, Taguchi J, Kurihara H, Kitaoka M, Kaneda H Kurihara Y, Maemura K, Shindo T, Minamino T, Ohno M, Yamaoki K, Ogasawara K, Aizawa T, Suzuki S, Yazaki Y. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation 1997; 95: 2032-6.
  • 12 Gallagher PM, Meleady R, Shields DC, Tan KS, McMaster D, Rozen R, Evans A, Graham IM, Whitehead AS. Homocysteine and risk of premature coronary heart disease. Evidence for a common gene mutation. Circulation 1996; 94: 2154-8.
  • 13 Arruda VR, von Zuben PM, Chiaparini LC, Annichino-Bizzacchi JM, Costa FF. The mutation Ala677 to Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. Thromb Haemost 1997; 77: 818-21.
  • 14 Schwartz SM, Siscovick DS, Malinow MR, Rosendaal FR, Beverley RK, Hess DL, Psaty BM, Longstreth WT, Koepsell TD, Raghunathan TE, Reitsma PH. Myocardial infarction in young women in relation to plasma total homocysteine, folate and a common variant in the methylenetetrahydrofolate reductase gene. Circulation 1997; 96: 412-7.
  • 15 Brugada R, Marian AJ. A common mutation in methylene tetrahydrofolate reductase gene is not a major risk of coronary artery disease or myocardial infarction. Atherosclerosis 1997; 128: 107-12.
  • 16 Ma J, Stampfer MJ, Hennekens CH, Frosst P, Selhub J, Horsford J, Manilow R, Willet WC, Rozen R. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine and risk of myocardial infarction in US physicians. Circulation 1996; 94: 2410-6.
  • 17 Beauchamp NJ, Daly ME, Hampton KK, Cooper PC, Preston FE, Peake IR. High prevalence of a mutation in the factor V gene within the UK population: relationship to activated protein C resistance and familial thrombosis. Br J Haematol 1994; 88: 219-22.
  • 18 Kirschbaum NE, Foster PA. The polymerase chain reaction with sequence specific primers for the detection of the factor V mutation associated with activated protein C resistance. Thromb Haemost 1995; 74: 874-8.
  • 19 Poort SR, Bertina RM, Vos HL. Rapid detection of the prothrombin 20210 A variation by allele specific PCR. Thromb Haemost 1997; 78: 1157-8.
  • 20 Wood N, Bidwell J. Genetic screening and testing by induced heteroduplex formation. Electrophoresis 1996; 17: 247-54.
  • 21 Bowen DJ, Standen GR, Granville S, Bowely S, Wood N, Bidwell J. Genetic diagnosis of factor V Leiden using heteroduplex technology. Thromb Haemost 1997; 77: 119-22.
  • 22 Lahiri DK, Nurnberger Jr. JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res 1991; 19: 5444.
  • 23 Degen SJF, Davie EW. Nucleotide sequence of the gene for human prothrombin. Biochemistry 1987; 26: 6165-77.
  • 24 Goyette P, Sumner JS, Milos R, Duncan AMV, Rosenblatt DS, Matthews RG, Rozen R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nature Genetics 1994; 7: 195-200.
  • 25 Budowle B, Allen RC. Discontinuous polyacrylamide gel electrophoresis of DNA fragments. In: Protocols in human molecular genetics, Methods in Molecular Biology 9. Mathew CG. ed. New Jersey: Humana Press; 1991. p 128.
  • 26 Armando D’Angelo. Selhub J. Homocysteine and thrombotic disease. Blood 1997; 90: 1-11.
  • 27 Jackson HA, Bowen DJ, Worwood M. Rapid genetic screening for haemochromatosis using heteroduplex technology. Br J Haem 1997; 98: 856-9.
  • 28 Culpan D, Standen G, Wood N, Mazurier C, Gaucher C, Bidwell J. Rapid mutation screening in type 2A von Willebrand’s disease using universal heteroduplex generators. Br J Haematol 1997; 96: 464-9.
  • 29 Wood N, Standen GR, Murray EW, Lillicrap D, Holmberg L, Peake IR, Bidwell J. Rapid genotype analysis of type 2B von Willebrand disease using a universal heteroduplex generator. Br J Haematol 1995; 89: 152-6.
  • 30 Bowen DJ, Standen GR. Genetic diagnosis of factor V Leiden: the question of specificity. Br J Haematol 1997; 97: 691-2.
  • 31 Jenny RJ, Pittman DD, Toole JJ, Kriz RW, Aldape RA, Hewick RM, Kaufman RJ, Mann KG. Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci USA 1987; 84: 4846-50.
  • 32 Cripe LD, Moore KD, Kane WH. Structure of the gene for human coagulation factor V. Biochemistry 1992; 31: 3777-85.