Kinder- und Jugendmedizin 2016; 16(05): 366-372
DOI: 10.1055/s-0037-1616339
Nephrologie
Schattauer GmbH

Bedeutung der Genetik in der Kindernephrologie

Impact of human genetics in pediatric nephrology
J. Hoefele
1   Institut für Humangenetik, Technische Universität München
› Author Affiliations
Further Information

Publication History

Eingereicht am: 19 May 2016

angenommen am: 24 May 2016

Publication Date:
11 January 2018 (online)

Zusammenfassung

Bei vielen kindernephrologischen Erkrankungen ist heutzutage eine genetische Ursache bekannt. Unter Verwendung neuester Technologien in der Humangenetik können diese Erkrankungen frühzeitig diagnostiziert, invasive klinisch-diagnostische Eingriffe bei diesen Patienten ggf. vermieden, mögliche Komplikationen der Erkrankungen durch entsprechende Therapie verhindert oder hinausgezögert und Kosten für die Therapien signifikant reduziert werden. Die molekulargenetische Untersuchung wird in den kommenden Jahren einen zunehmenden Stellenwert in der Kindernephrologie einnehmen. Im Folgenden wird ein Überblick über genetische Aspekte wesentlicher Erkrankungen in der Kindernephrologie sowie über empfohlene Untersuchungstechniken gegeben.

Summary

For many pediatric kidney diseases genetic factors have been identified as causative. Using newest technologies in the field of human genetics these diseases can be diagnosed at early stages, invasive diagnostic procedures in these patients can be avoided if applicable, possible complications of the disease can be prevented or postponed, and therapy costs can be significantly reduced. In the upcoming years, the molecular examination will play a significant role in pediatric nephrology. The aim of this article is to give an overview on genetic aspects of several pediatric kidney diseases as well as on recommended.

 
  • Literatur

  • 1 Bergmann C. Educational paper: ciliopathies. Eur J Pediatr 2012; 171: 1285-1300.
  • 2 Bergmann C, von Bothmer J, Ortiz Bruchle N. et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J Am Soc Nephrol 2011; 22: 2047-2056.
  • 3 Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2007; 18: 1374-1380.
  • 4 Bergmann C, Senderek J, Kupper F. et al. PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 2004; 23: 453-463.
  • 5 Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med 2011; 364: 1533-1543.
  • 6 Hurd TW, Hildebrandt F. Mechanisms of nephronophthisis and related ciliopathies. Nephron Exp Nephrol 2011; 118: e9-14.
  • 7 Halbritter J, Porath JD, Diaz KA. et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum Genet 2013; 132: 865-884.
  • 8 Santin S, Bullich G, Tazon-Vega B. et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2011; 6: 1139-1148.
  • 9 Weber S. Genetik des nephrotischen Syndroms. Der Nephrologe 2008; 3: 394-407.
  • 10 Buscher AK, Beck BB, Melk A. et al. Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 2016; 11: 245-253.
  • 11 Ruf RG, Lichtenberger A, Karle SM. et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 2004; 15: 722-732.
  • 12 Weber S, Strasser K, Rath S. et al. Identification of 47 novel mutations in patients with Alport syndrome and thin basement membrane nephropathy. Pediatr Nephrol 2016; 31: 941-955.
  • 13 Jais JP, Knebelmann B, Giatras I. et al. X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 2000; 11: 649-657.
  • 14 Gross O, Licht C, Anders HJ. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 2012; 81: 494-501.
  • 15 Rheault MN. Women and Alport syndrome. Pediatr Nephrol 2012; 27: 41-46.
  • 16 Voskarides K, Damianou L, Neocleous V. et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol 2007; 18: 3004-3016.
  • 17 Saisawat P, Tasic V, Vega-Warner V. et al. Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int 2012; 81: 196-200.
  • 18 Ulinski T, Lescure S, Beaufils S. et al. Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 2006; 17: 497-503.
  • 19 Weber S, Landwehr C, Renkert M. et al. Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol Dial Transplant 2011; 26: 136-143.
  • 20 Riedl M, Fakhouri F, Le Quintrec M. et al. Spectrum of complement-mediated thrombotic microangiopathies: pathogenetic insights identifying novel treatment approaches. Semin Thromb Hemost 2014; 40: 444-464.
  • 21 Loirat C, Fakhouri F, Ariceta G. et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol 2016; 31: 15-39.
  • 22 European Renal Best Practice Transplantation Guideline Development G. ERBP Guideline on the Management and Evaluation of the Kidney Donor and Recipient. Nephrol Dial Transplant 2013; 28 (Suppl. 02) ii1-71.
  • 23 Hoefele J, Brandis M, Hildebrandt F. Krankheiten des renalen Tubulussystems. In: Lentze, Schaub, Schulte, Spranger. Pädiatrie. 3. Aufl.. Heidelberg: Springer; 2007: 1373-1387.
  • 24 Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 2011; 26: 1789-1802.