Osteologie 2016; 25(03): 176-185
DOI: 10.1055/s-0037-1619014
Muskuloskelettale Radiologie
Schattauer GmbH

Bildgebung rheumatischer Erkrankungen

Röntgenbild und darüber hinausImaging rheumatic diseasesRadiography and beyond
S. Sahbai
1   Abteilung Nuklearmedizin, Radiologisches Department, Universitätsklinikum Tübingen
,
K. Thürmel
2   Abteilung für Nephrologie der 2. Medizinischen Klinik und Poliklinik, Klinikum Rechts der Isar, TU München
,
R. Meier
3   Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Ulm
,
M. Notohamiprodjo
4   Abteilung Diagnostische und Interventionelle Radiologie, Radiologisches Department, Universitätsklinikum Tübingen
› Author Affiliations
Further Information

Publication History

eingereicht: 01 March 2016

angenommen: 03 April 2016

Publication Date:
21 December 2017 (online)

Zusammenfassung

Bildgebende Verfahren spielen in der Diagnostik von Erkrankungen aus dem rheumatischen Formenkreis eine zentrale Rolle. Zahlreiche autoimmun-rheumatische Erkrankungen zeigen relativ spezifische Befallsmuster, so dass die Bildgebung zur Diagnosestellung und Verlaufsbeurteilung beiträgt. Das konventionelle Röntgenbild ist seit Langem nicht mehr die einzige zur Auswahl stehende bildgebende Methode. Da in frühen Erkran- kungsstadien v. a. weichteilige Veränderungen im Vordergrund stehen, sind z. B. die Sonografie und Magnetresonanztomografie der konventionellen Bildgebung hinsichtlich der diagnostischen Genauigkeit überlegen. In diesem Übersichtsartikel soll daher der aktuelle Stand zur bildgebenden Diagnostik rheumatischer Erkrankungen dargestellt sowie ein Ausblick auf derzeitige technische und klinische Entwicklungen gegeben werden. Es werden die konventionelle Radiografie, die Computertomografie, der Ultraschall, nuklearmedizinische Verfahren, die Magnetresonanztomografie und die optische Bildgebung diskutiert.

Summary

Imaging plays a pivotal role in the diagnosis of rheumatic diseases. Various autoimmune or rheumatic diseases show a relatively specific pattern, so that imaging is particularly helpful for initial diagnosis or follow up. Plain film is not anymore the sole available imaging modality. Soft tissue is predominantly affected in early disease stages, so that ultrasound and magnetic resonance tomography yield a higher diagnostic accuracy. This article reviews current state of art imaging of rheumatic disease and gives an outlook on current technical and clinical developments. We discuss plain film, computed tomography, magnetic resonance tomography and optical imaging.

 
  • Literatur

  • 1 Neogi T. et al. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: Phase 2 methodological report. Arthritis Rheum 2010; 62 (09) 2582-2591.
  • 2 Aletaha D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheuma 2010; 62 (09) 2569-2581.
  • 3 Sugimoto H, Takeda A, Hyodoh K. Early-stage rheumatoid arthritis: prospective study of the effectiveness of MR imaging for diagnosis. Radiology 2000; 216 (02) 569-575.
  • 4 Arnett FC. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31 (03) 315-324.
  • 5 de Launay D. et al. Selective involvement of ERK and JNK mitogen-activated protein kinases in early rheumatoid arthritis (1987 ACR criteria compared to 2010 ACR/EULAR criteria): a prospective study aimed at identification of diagnostic and prognostic biomarkers as well as therapeutic targets. Annals of the rheumatic diseases 2012; 71 (03) 415-423.
  • 6 Berglin E, Dahlqvist SR. Comparison of the 1987 ACR and 2010 ACR/EULAR classification criteria for rheumatoid arthritis in clinical practice: a prospective cohort study. Scandinavian journal of rheumatology 2013; 42 (05) 362-368.
  • 7 Makinen H. et al. Do the 2010 ACR/EULAR or ACR 1987 classification criteria predict erosive disease in early arthritis?. Annals of the rheumatic diseases 2013; 72 (05) 745-747.
  • 8 de Hair MJ. et al. The clinical picture of rheumatoid arthritis according to the 2010 American College of Rheumatology/European League Against Rheumatism criteria: is this still the same disease?. Arthritis and rheumatism 2012; 64 (02) 389-393.
  • 9 Bennett DL, Ohashi K, El-Khoury GY. Spondy-loarthropathies: ankylosing spondylitis and psoriatic arthritis. Radiologic clinics of North America 2004; 42 (01) 121-134.
  • 10 Srikhum W. et al. Quantitative and semiquantitative bone erosion assessment on high-resolution peripheral quantitative computed tomography in rheumatoid arthritis. The Journal of rheumatology 2013; 40 (04) 408-416.
  • 11 Johnson TR. et al. Material differentiation by dual energy CT: initial experience. European radiology 2007; 17 (06) 1510-1517.
  • 12 Hu HJ, Liao MY, Xu LY. Clinical utility of dual-energy CT for gout diagnosis. Clinical imaging 2015; 39 (05) 880-885.
  • 13 Baer AN. et al. Dual-energy computed tomography has limited sensitivity for non-tophaceous gout: a comparison study with tophaceous gout. BMC musculoskeletal disorders 2016; 17 (01) 91.
  • 14 Backhaus M. et al. Guidelines for musculoskeletal ultrasound in rheumatology. Ann Rheum Dis 2001; 60 (07) 641-649.
  • 15 Boesen M. et al. Ultrasound Doppler score correlates with OMERACT RAMRIS bone marrow oedema and synovitis score in the wrist joint of patients with rheumatoid arthritis. Ultraschall Med 2012; 33 (07) E166-E172.
  • 16 Klauser A. et al. The value of contrast-enhanced color Doppler ultrasound in the detection of vascularization of finger joints in patients with rheumatoid arthritis. Arthritis Rheum 2002; 46 (03) 647-653.
  • 17 Sreerangaiah D. et al. Quantitative power Doppler ultrasound measures of peripheral joint synovitis in poor prognosis early rheumatoid arthritis predict radiographic progression. Rheumatology (Oxford) 2016; 55 (01) 89-93.
  • 18 Szkudlarek M. et al. Power Doppler ultrasonography for assessment of synovitis in the meta- carpophalangeal joints of patients with rheumatoid arthritis: a comparison with dynamic magnetic resonance imaging. Arthritis Rheum 2001; 44 (09) 2018-2023.
  • 19 Wakefield RJ. et al. Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol 2005; 32 (12) 2485-2487.
  • 20 Szkudlarek M. et al. Ultrasonography of the metacarpophalangeal and proximal interphalangeal joints in rheumatoid arthritis: a comparison with magnetic resonance imaging, conventional radiography and clinical examination. Arthritis Res Ther 2006; 08 (02) R52.
  • 21 Schmidt WA. et al. Grading of ultrasound Doppler signals in synovitis: does it need an update?. Rheu- matology (Oxford) 2015; 54 (10) 1897-1903.
  • 22 Hammer HB. et al. Examination of intra and interrater reliability with a new ultrasonographic reference atlas for scoring of synovitis in patients with rheumatoid arthritis. Ann Rheum Dis 2011; 70 (11) 1995-1998.
  • 23 Konermann W, Gruber G. [Standardized sectional planes of the locomotor apparatus]. Orthopade 2002; 31 (02) 125-134.
  • 24 Cai XH. et al. Application of contrast-enhanced ultrasonography and ultrasonography scores in rheumatoid arthritis. Int J Clin Exp Med 2015; 08 (11) 20056-20064.
  • 25 Fiocco U. et al. Vascular perfusion kinetics by contrast-enhanced ultrasound are related to synovial microvascularity in the joints of psoriatic arthritis. Clin Rheumatol 2015; 34 (11) 1903-1912.
  • 26 Tamas MM. et al. The evolution of time-intensity curves of contrast enhanced ultrasonography in early arthritis patients with wrist involvement. Med Ultrason 2015; 17 (03) 345-351.
  • 27 Bonifati C. et al. Clinical and Contrast-Enhanced Ultrasound Echography Outcomes in Psoriatic Arthritis Patients after One Year of Continuous Therapy with Anti-TNF Drugs. ISRN Dermatol 2014; 2014: 932721.
  • 28 Stramare R. et al. MR and CEUS monitoring of patients with severe rheumatoid arthritis treated with biological agents: a preliminary study. Radiol Med 2014; 119 (06) 422-431.
  • 29 Naredo E. et al. Assessment of inflammatory activity in rheumatoid arthritis: a comparative study of clinical evaluation with grey scale and power Doppler ultrasonography. Ann Rheum Dis 2005; 64 (03) 375-381.
  • 30 Scheel AK. et al. Prospective 7 year follow up imaging study comparing radiography, ultrasonography, and magnetic resonance imaging in rheumatoid arthritis finger joints. Ann Rheum Dis 2006; 65 (05) 595-600.
  • 31 Szkudlarek M. et al. Summary Findings of a Sys- tematic Literature Review of the Ultrasound Assessment of Bone Erosions in Rheumatoid Arthritis. J Rheumatol 2016; 43 (01) 12-21.
  • 32 Tamas MM. et al. Bone erosions in rheumatoid arthritis: ultrasound findings in the early stage of the disease. Rheumatology (Oxford) 2014; 53 (06) 1100-1107.
  • 33 Fukae J. et al. Radiographic prognosis of finger joint damage predicted by early alteration in synovial vascularity in patients with rheumatoid arthritis: Potential utility of power doppler sonography in clinical practice. Arthritis Care Res (Hoboken) 2011; 63 (09) 1247-1253.
  • 34 Dougados M. et al. The ability of synovitis to predict structural damage in rheumatoid arthritis: a comparative study between clinical examination and ultrasound. Ann Rheum Dis 2013; 72 (05) 665-671.
  • 35 Witt M. et al. Relevance of grade 1 gray-scale ultrasound findings in wrists and small joints to the assessment of subclinical synovitis in rheumatoid arthritis. Arthritis Rheum 2013; 65 (07) 1694-1701.
  • 36 Filippucci E. et al. Hand tendon involvement in rheumatoid arthritis: an ultrasound study. Semin Arthritis Rheum 2012; 41 (06) 752-760.
  • 37 Lillegraven S. et al. Tenosynovitis of the extensor carpi ulnaris tendon predicts erosive progression in early rheumatoid arthritis. Ann Rheum Dis 2011; 70 (11) 2049-2050.
  • 38 Hammer HB, Kvien TK. Comparisons of 7- to 78-joint ultrasonography scores: all different joint combinations show equal response to adalimumab treatment in patients with rheumatoid arthritis. Arthritis Res Ther 2011; 13 (03) R78.
  • 39 Ejbjerg BJ. et al. Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography. Annals of the rheumatic diseases 2005; 64 (09) 1280-1287.
  • 40 Reiser MF. et al. Gadolinium-DTPA in rheumatoid arthritis and related diseases: first results with dynamic magnetic resonance imaging. Skeletal radiology 1989; 18 (08) 591-597.
  • 41 Narvaez JA. et al. MR imaging of early rheumatoid arthritis. Radiographics: a review publication of the Radiological Society of North America, Inc 2010; 30 (01) 143-163 discussion 163-165.
  • 42 Notohamiprodjo M. et al. Dynamic 3D-MR-angi- ography for assessing rheumatoid disease of the hand--a feasibility study. European journal of radiology 2012; 81 (05) 951-956.
  • 43 Vordenbaumen S. et al. Dynamic contrast-enhanced magnetic resonance imaging of metacarpophalangeal joints reflects histological signs of synovitis in rheumatoid arthritis. Arthritis research & therapy 2014; 16 (05) 452.
  • 44 Wieners G. et al. High-resolution MRI of the wrist and finger joints in patients with rheumatoid arthritis: comparison of 1.5 Tesla and 3.0 Tesla. European radiology 2007; 17 (08) 2176-2182.
  • 45 Bird P. et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Exercise 5: an international multicenter reliability study using computerized MRI erosion volume measurements. The Journal of rheumatology 2003; 30 (06) 1380-1384.
  • 46 Bird P. et al. The development of the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Annals of the rheumatic diseases 2005; 64 (Suppl. 01) i8-i10.
  • 47 Ostergaard M. et al. An introduction to the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Annals of the rheumatic diseases 2005; 64 (Suppl. 01) i3-i7.
  • 48 Ejbjerg B. et al. The EULAR-OMERACT rheumatoid arthritis MRI reference image atlas: the wrist joint. Annals of the rheumatic diseases 2005; 64 (Suppl. 01) i23-i47.
  • 49 Conaghan P. et al. The EULAR-OMERACT rheumatoid arthritis MRI reference image atlas: the metacarpophalangeal joints. Annals of the rheu- matic diseases 2005; 64 (Suppl. 01) i11-i21.
  • 50 Dohn UM. et al. The OMERACT-RAMRIS rheumatoid arthritis magnetic resonance imaging joint space narrowing score: intrareader and interreader reliability and agreement with computed tomography and conventional radiography. The Journal of rheumatology 2014; 41 (02) 392-397.
  • 51 Ostergaard M, Lorenzen I, Henriksen O. Dynamic gadolinium-enhanced MR imaging in active and inactive immunoinflammatory gonarthritis. Acta radiologica 1994; 35 (03) 275-281.
  • 52 Axelsen MB. et al. Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology. Scandinavian journal of rheumatology 2012; 41 (02) 89-94.
  • 53 Maijer KI. et al. Dynamic contrast-enhanced magnetic resonance imaging using pharmacokinetic modeling: Initial experience in early arthritis patients. Arthritis Rheumatol 2016; 68 (03) 587-596.
  • 54 Hetland ML. et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Annals of the rheumatic diseases 2009; 68 (03) 384-390.
  • 55 Narvaez J. et al. Usefulness of magnetic resonance imaging of the hand versus anticyclic citrullinated peptide antibody testing to confirm the diagnosis of clinically suspected early rheumatoid arthritis in the absence of rheumatoid factor and radiographic erosions. Seminars in arthritis and rheumatism 2008; 38 (02) 101-109.
  • 56 Boutry N. et al. Early rheumatoid arthritis: a review of MRI and sonographic findings. AJR. American journal of roentgenology 2007; 189 (06) 1502-1509.
  • 57 Eshed I. et al. MRI of enthesitis of the appendicular skeleton in spondyloarthritis. Annals of the rheumatic diseases 2007; 66 (12) 1553-1559.
  • 58 Aquino MR. et al. Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns. Pediatric radiology 2015; 45 (05) 754-762.
  • 59 Poggenborg RP. et al. Enthesitis in patients with psoriatic arthritis, axial spondyloarthritis and healthy subjects assessed by “head-to-toe” whole-body MRI and clinical examination. Annals of the rheumatic diseases 2015; 74 (05) 823-829.
  • 60 Althoff CE. et al. Comparison of Clinical Examination versus Whole-body Magnetic Resonance Imaging of Enthesitis in Patients with Early Axial Spondyloarthritis during 3 Years of Continuous Etanercept Treatment. The Journal of rheumatol- ogy 2016; 43 (03) 618-624.
  • 61 Backhaus M. et al. Arthritis of the finger joints: a comprehensive approach comparing conventional radiography, scintigraphy, ultrasound, and contrast-enhanced magnetic resonance imaging. Arthritis Rheum 1999; 42 (06) 1232-1245.
  • 62 Mottonen TT. et al. Value of joint scintigraphy in the prediction of erosiveness in early rheumatoid arthritis. Ann Rheum Dis 1988; 47 (03) 183-189.
  • 63 Desaulniers M. et al. Radiotechnetium polyphos-phate joint imaging. J Nucl Med 1974; 15 (06) 417-423.
  • 64 Buchbender C. et al. Synovitis and bone inflammation in early rheumatoid arthritis: high-resolution multi-pinhole SPECT versus MRI. Diagn In- terv Radiol 2013; 19 (01) 20-24.
  • 65 Raza N, Hameed A, Ali MK. Detection of subclini- cal joint involvement in psoriasis with bone scintigraphy and its response to oral methotrexate. Clin Exp Dermatol 2008; 33 (01) 70-73.
  • 66 Namey TC, Rosenthall L. Periarticular uptake of 99mtechnetium diphosphonate in psoriatics: correlation with cutaneous activity. Arthritis Rheum 1976; 19 (03) 607-612.
  • 67 Scarpa R. et al. Early psoriatic arthritis: the clinical spectrum. J Rheumatol 2008; 35 (01) 137-141.
  • 68 Ezziddin S. et al. Introduction of a metabolic joint asymmetry score derived from conventional bone scintigraphy. A new tool to differentiate psoriatic from rheumatoid arthritis. Nuklearmedizin 2015; 54 (04) 183-189.
  • 69 Chaudhari AJ. et al. High-resolution (18)F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis. Eur J Nucl Med Mol Imaging 2010; 37 (05) 1047.
  • 70 Gheita TA. et al. Bone scintigraphy in axial seronegative spondyloarthritis patients: role in detection of subclinical peripheral arthritis and disease activity. Int J Rheum Dis 2015; 18 (05) 553-559.
  • 71 Yildiz A. et al. The evaluation of sacroiliitis using 99mTc-nanocolloid and 99mTc-MDP scintigraphy. Nucl Med Commun 2001; 22 (07) 785-794.
  • 72 Cui Y. et al. The relationship between histopathological and imaging features of sacroiliitis. Int J Clin Exp Med 2015; 08 (04) 5904-5910.
  • 73 Palosaari K. et al. Bone oedema predicts erosive progression on wrist MRI in early RA - a 2-yr observational MRI and NC scintigraphy study. Rheumatology (Oxford) 2006; 45 (12) 1542-1548.
  • 74 Watanabe T. et al. F-FDG and F-NaF PET/CT demonstrate coupling of inflammation and accelerated bone turnover in rheumatoid arthritis. Mod Rheumatol 2016; 26 (02) 180-187.
  • 75 Tamam C. et al. Diagnostic value of single-photon emission computed tomography combined with computed tomography in relation to MRI on osteochondral lesions of the talus. Nucl Med Commun 2015; 36 (08) 808-814.
  • 76 Knesaurek K. et al. Precise fusion of MRI and dual energy 111In WBC/99mTc HDP SPECT/CT in the diabetic foot using companion CT: an example of SPECT/MRI imaging. Q J Nucl Med Mol Imaging 2015; 59 (01) 129-135.
  • 77 Kennedy A. et al. Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis and rheumatism 2010; 62 (03) 711-721.
  • 78 Pap T, istler O. Linking angiogenesis to bone destruction in arthritis. Arthritis and rheumatism 2005; 52 (05) 1346-1348.
  • 79 Dziekan T. et al. Detection of rheumatoid arthritis by evaluation of normalized variances of fluorescence time correlation functions. Journal of biomedical optics 2011; 16 (07) 076015.
  • 80 Chamberland D, Jiang Y, Wang X. Optical imaging: new tools for arthritis. Integrative biology: quantitative biosciences from nano to macro. 2010; 02 (10) 496-509.
  • 81 Fischer T. et al. Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Academic radiology 2006; 13 (01) 4-13.
  • 82 Meier R. et al. Indocyanine green-enhanced imaging of antigen-induced arthritis with an integrated optical imaging/radiography system. Arthritis and rheumatism 2010; 62 (08) 2322-2327.
  • 83 Meier R. et al. Detection of synovitis in the hands of patients with rheumatologic disorders: diagnostic performance of optical imaging in comparison with magnetic resonance imaging. Arthritis and rheumatism 2012; 64 (08) 2489-2498.
  • 84 Werner SG. et al. Inflammation assessment in patients with arthritis using a novel in vivo fluorescence optical imaging technology. Annals of the rheumatic diseases 2012; 71 (04) 504-510.
  • 85 Meier R. et al. Synovitis in patients with early inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced optical imaging and MR imaging. Radiology 2014; 270 (01) 176-185.