Hamostaseologie 2010; 30(03): 139-143
DOI: 10.1055/s-0037-1619044
Review
Schattauer GmbH

Antiphospholipid syndrome

Current insights into laboratory diagnosis and pathophysiologyAntiphospholipidsyndromAktuelle Einblicke in die Labordiagnostik und Pathophysiologie
G. M. A. van Os
1   Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, The Netherlands
2   Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
,
R. T. Urbanus
1   Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, The Netherlands
,
C. Agar
2   Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
,
J. C. M. Meijers
2   Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
,
P. G. de Groot
1   Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, The Netherlands
› Author Affiliations
GMAvO was supported by a grant from the Netherlands Organization for Scientific Research (ZonMW 91207002) to JCMM and PGdG. CA was supported by an AMC stimulation grant to JCMM.
Further Information

Publication History

Publication Date:
26 December 2017 (online)

Summary

The antiphospholipid syndrome (APS) is a non-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL) in the plasma of patients with vascular thrombosis, recurrent complications of pregnancy, or both (1, 2). The presence of aPL in plasma of patients can be detected with either a prolongation of phospholipid dependent coagulation tests (lupus anticoagulant, LAC), or with solid phase immune assays against the protein β2-glycoprotein I (β2-GPI) or the phospholipid cardiolipin (anti-β2-GPI antibody ELISA and anti-cardiolipin antibody ELISA, respectively) (3). For a long time there was a lot of confusion on who had the syndrome and who not. To solve this dispute, an international consensus meeting was organized in Sapporo in 1999 to formulate classification criteria for patients with the antiphospholipid syndrome (4). These criteria have been updated in 2004 at another international consensus meeting in Sydney (5). The classification criteria were defined for scientific purposes and were aimed to be used as inclusion criteria in patient related studies. They were specifically not defined for diagnostic purposes. However, current practice is that these criteria are used as a diagnostic tool. This is very unfortunate because the specificity of the different aPL assays to detect the clinical manifestations that characterize APS are disputable. One of the aims of defining the criteria was to initiate studies to determine the value of the different anti-phospholipid antibody assays to serve as biomarker for the risk of thrombosis and pregnancy morbidity. The recent progress made on this important topic will be discussed.

Zusammenfassung

Das Antiphospholipidsyndrom (APS) ist eine nicht entzündliche Autoimmunerkrankung, die durch Antiphospholipid-Antikörper (aPL) im Plasma von Patienten mit vaskulärer Thrombose, rezidivierenden Schwangerschaftskomplikationen oder beidem gekennzeichnet ist (1, 2). Das Vorhandensein von aPL im Patienten-plasma kann entweder über eine Verlänge-rung der Phospholipid-abhängigen Gerinnungstests (Lupus-Antikoagulans, LA) oder mittels Festphasen-Immunassay gegen β2-Glykoprotein-1 (ß2GP-1) bzw. gegen das Phospholipid Cardiolipin festgestellt werden (Anti-ß2GP-1-ELISA bzw. Anti-Cardiolipin-ELI-SA) (3). Lange Zeit gab es erhebliche Verwirrung darüber, wer unter dem Syndrom leidet und wer nicht. Um diese Kontroverse aufzulösen, wurde 1999 in Sapporo eine internationale Konsensuskonferenz einberufen, die Klassifikationskriterien für Patienten mit APS formulieren sollte (4). Diese Kriterien wurden 2004 in einer weiteren internationalen Konsensuskonferenz in Sydney aktualisiert (5). Die Klassifikationskriterien wurden für wissenschaftliche Zwecke definiert und sollten als Einschlusskriterien für Patientenstudien dienen. Sie wurden ausdrücklich nicht für diagnostische Zwecke definiert. Jedoch werden diese Kriterien in der Praxis zur Diagnostik genutzt. Dies ist sehr unglücklich, da die Spezifi-tät der verschiedenen aPL-Assays bei der Aufdeckung der für APS charakteristischen klinischen Manifestationen strittig ist. Eines der Ziele bei der Definition der Kriterien bestand darin, Studien zu initiieren, in denen die Bedeutung der einzelnen Anti-Phospholipid-Antikörper-Assays als Biomarker für das Risiko von Thrombosen und Schwangerschaftsmor-bidität untersucht werden sollte. Der jüngst erreichte Fortschritt bei diesem wichtigen Problem wird diskutiert.

 
  • References

  • 1 Arnout J, Vermylen J. Current status and implications of autoimmune antiphospholipid antibodies in relation to thrombotic disease. J Thromb Haemost 2003; 01: 931-942.
  • 2 Urbanus RT, Derksen RH, de Groot PG. Current insight into diagnostics and pathophysiology of the antiphospolipid syndrome. Blood Rev 2008; 22: 93-105.
  • 3 Giannakopoulos B. et al. How we diagnose the antiphospholipid syndrome. Blood 2009; 113: 985-994.
  • 4 Wilson WA. et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum 1999; 42: 1309-1311.
  • 5 Miyakis S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb Haemost 2006; 04: 295-306.
  • 6 Galli M. et al. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood 2003; 101: 1827-1832.
  • 7 Wahl DG. et al. Meta-analysis of the risk of venous thrombosis in individuals with antiphospholipid antibodies without underlying autoimmune disease or previous thrombosis. Lupus 1998; 07: 15-22.
  • 8 Kearon C. et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic thromboembolism. New Engl J Med 1999; 340: 901-907.
  • 9 Ginsberg JS. et al. Antiphospholipid antibodies and venous thromboembolism. Blood 1995; 86: 3685-3691.
  • 10 Urbanus RT. et al. Antiphospholipid antibodies and risk of myocardial infarction and ischaemic stroke in young women in the RATIO study: a case-control study. Lancet Neurology 2009; 08: 998-1005.
  • 11 Reber G, Boehlen F, de Moerloose P. Technical aspects in laboratory testing for antiphospholipid antibodies: is standardization an impossible dream?. Semin Thromb Hemost 2008; 34: 340-346.
  • 12 Reber G. et al. Multicenter evaluation of nine commercial kits for the quantitation of anticardiolipin antibodies. The Working Group on Methodologies in Haemostasis from the GEHT (Groupe d’Etudes sur l’Hemostase et la Thrombose). Thromb Haemost 1995; 73: 444-452.
  • 13 Jennings I. et al. Lupus anticoagulant testing: improvements in performance in a UK NEQAS proficiency testing exercise after dissemination of national guidelines on laboratory methods. Br J Haematol 2002; 119: 364-369.
  • 14 Galli M. et al. Invitation to a debate on the serological criteria that define the antiphospholipid syndrome. J Thromb Haemostas 2008; 06: 399-401.
  • 15 Bouma B. et al. Adhesion mechanism of human ß2-glycoprotein I to phospholipids based on its crystal structure. EMBO Journal 1999; 18: 5166-5174.
  • 16 Iverson GM. et al. Use of single point mutations in domain I of beta 2-glycoprotein I to determine fine antigenic specificity of antiphospholipid autoantibodies. J Immunol 2002; 169: 7097-7103.
  • 17 De Laat B. et al. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of {beta}2-glycoprotein I cause LAC and their presence correlates strongly with thrombosis. Blood 2005; 105: 1540-1545.
  • 18 Ioannou Y. et al. Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta(2)-glycoprotein I: mutation studies including residues R39 to R43. Arthritis Rheum 2007; 56: 280-290.
  • 19 Ioannou Y. et al. In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of beta2-glycoprotein I: proof of concept. J Thromb Haemost 2009; 07: 833-842.
  • 20 Pengo V. et al. Clinical course of high risk patients diagnosed with Antiphospholipid Syndrome (APS). J Thromb Haemost 2009; 07: 1737-1740.
  • 21 Simmelink MJA. et al. A simple method to discriminate between β2-glycoprotein I – and prothrombin-dependent lupus anticoagulants. J Thromb Haemost 2003; 01: 740-747.
  • 22 Oku K. et al. Antiprothrombin antibody testing: detection and clinical utility. Semin Thromb Hemost 2008; 34: 335-339.
  • 23 McNeil HP. et al. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: ß2glycoprotein I. Proc Natl Acad Sci USA 1990; 87: 4120-4124.
  • 24 Galli M. et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma cofactor. Lancet 1990; 335: 1544-1547.
  • 25 Hoeg JM. et al. Characterization of plasma lipids and lipoproteins in patients with beta 2-glycoprotein I (apolipoprotein H) deficiency. The fasting plasma lipids, lipoproteins, and apolipoproteins were evaluated in 5 subjects. Atherosclerosis 1985; 55: 25-34.
  • 26 Sheng et al. Impaired thrombin generation in beta 2-glycoprotein I null mice. J Biol Chem 2001; 276: 13817-13821.
  • 27 Jankowski M. et al. Thrombogenicity of beta 2-glyco-protein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood 2003; 101: 157-162.
  • 28 Shoenfeld Y, Blank M, Sherer Y. Induction and treatment of the antiphospholipid syndrome--lessons from animal models. Eur J Clin Invest 2001; 31: 736-740.
  • 29 Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10: 1222-1126.
  • 30 Lozier J, Takahashi N, Putnam FW. Complete amino acid sequence of human plasma beta 2-glycoprotein I. Proc Natl Acad Sci USA 1984; 81: 3640-3644.
  • 31 Ragusa MA. et al. RT-PCR and in situ hybridization analysis of apolipoprotein H expression in rat normal tissues. Int J Mol Med 2006; 18: 449-455.
  • 32 Agar C. et al. Beta-glycoprotein I is incorrectly named apolipoprotein H. J Thromb Haemost 2009; 07: 235-236.
  • 33 Palomo I. et al. Antiphospholipid syndrome: a comprehensive review of a complex and multisystemic disease. Clin Exp Rheumatol 2009; 27: 668-677.
  • 34 Satta N. et al. The role of TLR2 in the inflammatory activation of mouse fibroblasts by human anti-phospholipid antibodies. Blood 2007; 109: 1507-1514.
  • 35 Pierangeli SS. et al. Toll-like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann Rheum Dis 2007; 66: 1327-1333.
  • 36 Romay-Penabad Z. et al. C5a receptor-deficient mice are protected from thrombophilia and endothelial cell activation induced by some antiphospholipid antibodies. Ann NY Acad Sci 2007; 1108: 554-566.
  • 37 Romay-Penabad Z. et al. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood 2009; 114: 3074-3083.
  • 38 Lutters BCH. et al. Dimers of ß2-glycoprotein I increase platelet deposition to collagen via interaction with phospholipids and the apolipoprotein E receptor 2 ‘. J Biol Chem 2003; 278: 33831-33838.
  • 39 Romay-Penabad Z. et al. Apolipoprotein E receptor 2 ‘ mediates pathogenic effects of dimeric β2-glyco-protein I and anti-β2-glycoprotein I antibodies. Blood 2008; 112: 156.
  • 40 Pennings MT. et al. Platelets express three different splice variants of ApoER2 that are all involved in signaling. J Thromb Haemost 2007; 05: 1538-1544.