J Knee Surg 2018; 31(02): 155-165
DOI: 10.1055/s-0037-1620233
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Magnetic Resonance Imaging of Articular Cartilage within the Knee

Erin C. Argentieri
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Alissa J. Burge
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
,
Hollis G. Potter
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
› Author Affiliations
Further Information

Publication History

01 September 2017

05 December 2017

Publication Date:
18 January 2018 (online)

Abstract

Magnetic resonance imaging (MRI) provides an effective and noninvasive means by which to evaluate articular cartilage within the knee. Existing techniques can be utilized to detect and monitor longitudinal changes in cartilage status due to injury or progression of degenerative disease. Quantitative MRI (qMRI) techniques can provide a metric by which to evaluate the efficacy of cartilage repair techniques and offer insight into the composition of cartilage and cartilage repair tissue. In this review, we provide background on MR signal generation and decay, the utility of morphologic MRI assessment, and qMRI techniques for the biochemical assessment of cartilage (dGEMRIC, T2, T2*, T1ρ, sodium, gagCEST). Finally, the description and utility of these qMRI techniques for the evaluation of cartilage repair are discussed.

 
  • References

  • 1 Mansour JM. Biomechanics of Cartilage, Kinesiology: The Mechanics and Pathomechanics of Human Movement. Philadelphia: Lippincott Williams and Wilkins; 2003: 66-79
  • 2 Chaudhari AM, Briant PL, Bevill SL, Koo S, Andriacchi TP. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 2008; 40 (02) 215-222
  • 3 Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1 (06) 461-468
  • 4 Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging 2013; 38 (05) 991-1008
  • 5 Potter HG, Koff MF. MR imaging tools to assess cartilage and joint structures. HSS J 2012; 8 (01) 29-32
  • 6 Guermazi A, Roemer FW, Alizai H. , et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology 2015; 277 (01) 23-43
  • 7 Hunter DJ, Altman RD, Cicuttini F. , et al. OARSI clinical trials recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage 2015; 23 (05) 698-715
  • 8 Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998; 80 (09) 1276-1284
  • 9 Bredella MA, Tirman PF, Peterfy CG. , et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. Am J Roentgenol 1999; 172 (04) 1073-1080
  • 10 Gustas CN, Blankenbaker DG, Rio AM, Winalski CS, Kijowski R. Evaluation of the articular cartilage of the knee joint using an isotropic resolution 3D fast spin-echo sequence with conventional and radial reformatted images. Am J Roentgenol 2015; 205 (02) 371-379
  • 11 Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch GH, Potter HG. Magnetic resonance imaging of cartilage repair: a review. Cartilage 2011; 2 (01) 5-26
  • 12 Link TM, Sell CA, Masi JN. , et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology–ROC analysis in an experimental model. Osteoarthritis Cartilage 2006; 14 (01) 63-70
  • 13 Masi JN, Sell CA, Phan C. , et al. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 2005; 236 (01) 140-150
  • 14 Yoshioka H, Stevens K, Genovese M, Dillingham MF, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology 2004; 231 (01) 31-38
  • 15 Crema MD, Roemer FW, Marra MD. , et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (01) 37-61
  • 16 Nacey NC, Geeslin MG, Miller GW, Pierce JL. Magnetic resonance imaging of the knee: An overview and update of conventional and state of the art imaging. J Magn Reson Imaging 2017; 45 (05) 1257-1275
  • 17 Jarraya M, Hayashi D, Guermazi A. , et al. Susceptibility artifacts detected on 3T MRI of the knee: frequency, change over time and associations with radiographic findings: data from the joints on glucosamine study. Osteoarthritis Cartilage 2014; 22 (10) 1499-1503
  • 18 Peterfy CG, Guermazi A, Zaim S. , et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12 (03) 177-190
  • 19 Hunter DJ, Guermazi A, Lo GH. , et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19 (08) 990-1002
  • 20 Hayter C, Potter H. Magnetic resonance imaging of cartilage repair techniques. J Knee Surg 2011; 24 (04) 225-240
  • 21 Argentieri EC, Sturnick DR, DeSarno MJ. , et al. Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury. Osteoarthritis Cartilage 2014; 22 (10) 1453-1460
  • 22 Argentieri ECSD, Gardner-Morse M, DeSarno M. , et al. Within subject tibial and femoral cartilage thickness differences four years post ACL-injury. Osteoarthritis Cartilage 2015; 23: A317-A318
  • 23 Eckstein F, Wirth W, Lohmander LS, Hudelmaier MI, Frobell RB. Five-year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament. Arthritis Rheumatol 2015; 67 (01) 152-161
  • 24 Frobell RB. Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. J Bone Joint Surg Am 2011; 93 (12) 1096-1103
  • 25 Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 2007; 35 (10) 1756-1769
  • 26 Graichen H, von Eisenhart-Rothe R, Vogl T, Englmeier KH, Eckstein F. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum 2004; 50 (03) 811-816
  • 27 Anderson DD, Chubinskaya S, Guilak F. , et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 2011; 29 (06) 802-809
  • 28 Bowers ME, Trinh N, Tung GA, Crisco JJ, Kimia BB, Fleming BC. Quantitative MR imaging using “LiveWire” to measure tibiofemoral articular cartilage thickness. Osteoarthritis Cartilage 2008; 16 (10) 1167-1173
  • 29 Andreisek G, White LM, Sussman MS. , et al. Quantitative MR imaging evaluation of the cartilage thickness and subchondral bone area in patients with ACL-reconstructions 7 years after surgery. Osteoarthritis Cartilage 2009; 17 (07) 871-878
  • 30 Cotofana S, Eckstein F, Wirth W. , et al. In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging. Eur Radiol 2011; 21 (06) 1127-1135
  • 31 Williams A, Winalski CS, Chu CR. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J Orthop Res 2017; 35 (03) 699-706
  • 32 Cotofana S, Benichou O, Hitzl W, Wirth W, Eckstein F. Is loss in femorotibial cartilage thickness related to severity of contra-lateral radiographic knee osteoarthritis?--longitudinal data from the osteoarthritis initiative. Osteoarthritis Cartilage 2014; 22 (12) 2059-2066
  • 33 Szczodry M, Coyle CH, Kramer SJ, Smolinski P, Chu CR. Progressive chondrocyte death after impact injury indicates a need for chondroprotective therapy. Am J Sports Med 2009; 37 (12) 2318-2322
  • 34 Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med 2012; 40 (02) 276-285
  • 35 Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum 2005; 52 (01) 120-127
  • 36 Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. Am J Roentgenol 2001; 177 (03) 665-669
  • 37 Goodwin DW, Zhu H, Dunn JF. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. Am J Roentgenol 2000; 174 (02) 405-409
  • 38 Ericsson YB, Tjörnstrand J, Tiderius CJ, Dahlberg LE. Relationship between cartilage glycosaminoglycan content (assessed with dGEMRIC) and OA risk factors in meniscectomized patients. Osteoarthritis Cartilage 2009; 17 (05) 565-570
  • 39 Potter HG, Black BR, Chong R. New techniques in articular cartilage imaging. Clin Sports Med 2009; 28 (01) 77-94
  • 40 Braun HJ, Gold GE. Advanced MRI of articular cartilage. Imaging Med 2011; 3 (05) 541-555
  • 41 Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 2005; 52 (11) 3528-3535
  • 42 Fleming BC, Oksendahl HL, Mehan WA. , et al. Delayed Gadolinium-Enhanced MR Imaging of Cartilage (dGEMRIC) following ACL injury. Osteoarthritis Cartilage 2010; 18 (05) 662-667
  • 43 Williams A, Gillis A, McKenzie C. , et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol 2004; 182 (01) 167-172
  • 44 Neuman P, Tjörnstrand J, Svensson J. , et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury--comparison with asymptomatic volunteers. Osteoarthritis Cartilage 2011; 19 (08) 977-983
  • 45 Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L. dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 2004; 51 (02) 286-290
  • 46 Grobner T. Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?. Nephrol Dial Transplant 2006; 21 (04) 1104-1108
  • 47 Xia Y, Moody JB, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn Reson Med 2002; 48 (03) 460-469
  • 48 Xia Y, Moody JB, Burton-Wurster N, Lust G. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. Osteoarthritis Cartilage 2001; 9 (05) 393-406
  • 49 Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ. Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 2006; 88 (08) 1826-1834
  • 50 Souza RB, Kumar D, Calixto N. , et al. Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthritis Cartilage 2014; 22 (10) 1367-1376
  • 51 Russell C, Pedoia V, Amano K, Potter H, Majumdar S. ; AF-ACL Consortium. Baseline cartilage quality is associated with voxel-based T1ρ and T2 following ACL reconstruction: a multicenter pilot study. J Orthop Res 2017; 35 (03) 688-698
  • 52 Su F, Hilton JF, Nardo L. , et al. Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthritis Cartilage 2013; 21 (08) 1058-1067
  • 53 Chaudhari AS, Sveinsson B, Moran CJ. , et al. Imaging and T2 relaxometry of short-T2 connective tissues in the knee using ultrashort echo-time double-echo steady-state (UTEDESS). Magn Reson Med 2017; 78 (06) 2136-2148
  • 54 Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM. T1ρ and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage 2013; 21 (01) 69-76
  • 55 Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232 (02) 592-598
  • 56 Blumenkrantz G, Stahl R, Carballido-Gamio J. , et al. The feasibility of characterizing the spatial distribution of cartilage T(2) using texture analysis. Osteoarthritis Cartilage 2008; 16 (05) 584-590
  • 57 Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015; 41 (04) 870-883
  • 58 Li X, Pai A, Blumenkrantz G. , et al. Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med 2009; 61 (06) 1310-1318
  • 59 Wirth W, Eckstein F, Boeth H, Diederichs G, Hudelmaier M, Duda GN. Longitudinal analysis of MR spin-spin relaxation times (T2) in medial femorotibial cartilage of adolescent vs mature athletes: dependence of deep and superficial zone properties on sex and age. Osteoarthritis Cartilage 2014; 22 (10) 1554-1558
  • 60 Wirth W, Maschek S, Beringer P, Eckstein F. Subregional laminar cartilage MR spin-spin relaxation times (T2) in osteoarthritic knees with and without medial femorotibial cartilage loss - data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 2017; 25 (08) 1313-1323
  • 61 Tsai PH, Chou MC, Lee HS. , et al. MR T2 values of the knee menisci in the healthy young population: zonal and sex differences. Osteoarthritis Cartilage 2009; 17 (08) 988-994
  • 62 Pan J, Pialat JB, Joseph T. , et al. Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative. Radiology 2011; 261 (02) 507-515
  • 63 Stahl R, Luke A, Li X. , et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients--a 3.0-Tesla MRI study. Eur Radiol 2009; 19 (01) 132-143
  • 64 Carballido-Gamio J, Joseph GB, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T2 knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative: a texture approach. Magn Reson Med 2011; 65 (04) 1184-1194
  • 65 Li X, Kuo D, Theologis A. , et al. Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1rho and T2–initial experience with 1-year follow-up. Radiology 2011; 258 (02) 505-514
  • 66 Li H, Chen S, Tao H, Chen S. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43 (04) 865-872
  • 67 Chu CR, Williams AA, West RV. , et al. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2014; 42 (08) 1847-1856
  • 68 Du J, Bydder M, Takahashi AM, Carl M, Chung CB, Bydder GM. Short T2 contrast with three-dimensional ultrashort echo time imaging. Magn Reson Imaging 2011; 29 (04) 470-482
  • 69 Du J, Pak BC, Znamirowski R. , et al. Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis. Magn Reson Imaging 2009; 27 (04) 557-564
  • 70 Akella SV, Regatte RR, Wheaton AJ, Borthakur A, Reddy R. Reduction of residual dipolar interaction in cartilage by spin-lock technique. Magn Reson Med 2004; 52 (05) 1103-1109
  • 71 Wheaton AJ, Borthakur A, Kneeland JB, Regatte RR, Akella SV, Reddy R. In vivo quantification of T1rho using a multislice spin-lock pulse sequence. Magn Reson Med 2004; 52 (06) 1453-1458
  • 72 Wheaton AJ, Dodge GR, Borthakur A, Kneeland JB, Schumacher HR, Reddy R. Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res 2005; 23 (01) 102-108
  • 73 Wheaton AJ, Casey FL, Gougoutas AJ. , et al. Correlation of T1rho with fixed charge density in cartilage. J Magn Reson Imaging 2004; 20 (03) 519-525
  • 74 Russell C, Pedoia V, Majumdar S. ; AF-ACL Consortium. Composite metric R2 - R1ρ (1/T2 - 1/T1ρ ) as a potential MR imaging biomarker associated with changes in pain after ACL reconstruction: a six-month follow-up. J Orthop Res 2017; 35 (03) 718-729
  • 75 Regatte RR, Akella SV, Wheaton AJ. , et al. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol 2004; 11 (07) 741-749
  • 76 Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 2006; 19 (07) 781-821
  • 77 Ling W, Regatte RR, Schweitzer ME, Jerschow A. Behavior of ordered sodium in enzymatically depleted cartilage tissue. Magn Reson Med 2006; 56 (05) 1151-1155
  • 78 Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage 2000; 8 (04) 288-293
  • 79 Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000; 143 (01) 79-87
  • 80 Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000; 44 (05) 799-802
  • 81 Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 2008; 105 (07) 2266-2270
  • 82 Kogan F, Hargreaves BA, Gold GE. Volumetric multislice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn Reson Med 2017; 77 (03) 1134-1141
  • 83 Schmitt B, Zbýn S, Stelzeneder D. , et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 2011; 260 (01) 257-264
  • 84 Singh A, Haris M, Cai K. , et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 2012; 68 (02) 588-594
  • 85 Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 2013; 21 (10) 1474-1484
  • 86 Kirsch S, Kreinest M, Reisig G, Schwarz ML, Ströbel P, Schad LR. In vitro mapping of 1H ultrashort T2* and T2 of porcine menisci. NMR Biomed 2013; 26 (09) 1167-1175
  • 87 Shao H, Chang EY, Pauli C. , et al. UTE bi-component analysis of T2* relaxation in articular cartilage. Osteoarthritis Cartilage 2016; 24 (02) 364-373
  • 88 Williams A, Qian Y, Chu CR. UTE-T2* mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthritis Cartilage 2011; 19 (01) 84-88
  • 89 Du J, Carl M, Bae WC. , et al. Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthritis Cartilage 2013; 21 (01) 77-85
  • 90 Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Curr Rheumatol Rep 2014; 16 (10) 448
  • 91 Culvenor AG, Collins NJ, Guermazi A. , et al. Early knee osteoarthritis is evident one year following anterior cruciate ligament reconstruction: a magnetic resonance imaging evaluation. Arthritis Rheumatol 2015; 67 (04) 946-955
  • 92 Oiestad BE, Holm I, Aune AK. , et al. Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med 2010; 38 (11) 2201-2210
  • 93 Smith MV, Nepple JJ, Wright RW, Matava MJ, Brophy RH. Knee osteoarthritis is associated with previous meniscus and anterior cruciate ligament surgery among elite college American football athletes. Sports Health 2017; 9 (03) 247-251
  • 94 Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 2005; 21 (08) 948-957
  • 95 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57 (01) 16-23
  • 96 Marlovits S, Striessnig G, Resinger CT. , et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur J Radiol 2004; 52 (03) 310-319
  • 97 Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol 2009; 44 (09) 603-612
  • 98 Siebold R, Suezer F, Schmitt B, Trattnig S, Essig M. Good clinical and MRI outcome after arthroscopic autologous chondrocyte implantation for cartilage repair in the knee. Knee Surg Sports Traumatol Arthrosc 2017; DOI: 10.1007/s00167-017-4491-0.
  • 99 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5 (04) 345-363
  • 100 Sirlin CB, Brossmann J, Boutin RD. , et al. Shell osteochondral allografts of the knee: comparison of mr imaging findings and immunologic responses. Radiology 2001; 219 (01) 35-43
  • 101 Li X, Wyatt C, Rivoire J. , et al. Simultaneous acquisition of T1ρ and T2 quantification in knee cartilage: repeatability and diurnal variation. J Magn Reson Imaging 2014; 39 (05) 1287-1293
  • 102 Trattnig S, Mamisch TC, Pinker K. , et al. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 2008; 18 (06) 1251-1259
  • 103 Trattnig S, Marlovits S, Gebetsroither S. , et al. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: Preliminary results. J Magn Reson Imaging 2007; 26 (04) 974-982
  • 104 Trattnig S, Burstein D, Szomolanyi P, Pinker K, Welsch GH, Mamisch TC. T1(Gd) gives comparable information as Delta T1 relaxation rate in dGEMRIC evaluation of cartilage repair tissue. Invest Radiol 2009; 44 (09) 598-602
  • 105 Kurkijärvi JE, Mattila L, Ojala RO. , et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthritis Cartilage 2007; 15 (04) 372-378
  • 106 Watanabe A, Wada Y, Obata T. , et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 2006; 239 (01) 201-208
  • 107 Welsch GH, Trattnig S, Scheffler K. , et al. Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging 2008; 28 (04) 979-986
  • 108 Mamisch TC, Trattnig S, Quirbach S, Marlovits S, White LM, Welsch GH. Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading–initial results. Radiology 2010; 254 (03) 818-826
  • 109 Holtzman DJ, Theologis AA, Carballido-Gamio J, Majumdar S, Li X, Benjamin C. T(1ρ) and T(2) quantitative magnetic resonance imaging analysis of cartilage regeneration following microfracture and mosaicplasty cartilage resurfacing procedures. J Magn Reson Imaging 2010; 32 (04) 914-923
  • 110 Mamisch TC, Hughes T, Mosher TJ. , et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 2012; 41 (03) 287-292
  • 111 Domayer SE, Kutscha-Lissberg F, Welsch G. , et al. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome - preliminary results. Osteoarthritis Cartilage 2008; 16 (08) 903-908
  • 112 Niethammer TR, Safi E, Ficklscherer A. , et al. Graft maturation of autologous chondrocyte implantation: magnetic resonance investigation with T2 mapping. Am J Sports Med 2014; 42 (09) 2199-2204
  • 113 Albrecht C, Reuter CA, Stelzeneder D. , et al. Matrix production affects MRI outcomes after matrix-associated autologous chondrocyte transplantation in the knee. Am J Sports Med 2017; 45 (10) 2238-2246
  • 114 Schoenbauer E, Szomolanyi P, Shiomi T. , et al. Cartilage evaluation with biochemical MR imaging using in vivo Knee compression at 3T-comparison of patients after cartilage repair with healthy volunteers. J Biomech 2015; 48 (12) 3349-3355
  • 115 Trattnig S, Mamisch TC, Welsch GH. , et al. Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla: an in vivo cross-sectional study. Invest Radiol 2007; 42 (06) 442-448
  • 116 Welsch GH, Mamisch TC, Quirbach S, Zak L, Marlovits S, Trattnig S. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 2009; 19 (05) 1253-1262
  • 117 Bredbenner TL, Eliason TD, Potter RS, Mason RL, Havill LM, Nicolella DP. Statistical shape modeling describes variation in tibia and femur surface geometry between control and incidence groups from the osteoarthritis initiative database. J Biomech 2010; 43 (09) 1780-1786
  • 118 Krych AJ, Nawabi DH, Farshad-Amacker NA. , et al. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med 2016; 44 (01) 91-98
  • 119 Jungmann PM, Brucker PU, Baum T. , et al. Bilateral cartilage T2 mapping 9 years after Mega-OATS implantation at the knee: a quantitative 3T MRI study. Osteoarthritis Cartilage 2015; 23 (12) 2119-2128
  • 120 Theologis AA, Schairer WW, Carballido-Gamio J, Majumdar S, Li X, Ma CB. Longitudinal analysis of T1ρ and T2 quantitative MRI of knee cartilage laminar organization following microfracture surgery. Knee 2012; 19 (05) 652-657
  • 121 Bala A, Penrose CT, Seyler TM, Mather III RC, Wellman SS, Bolognesi MP. Outcomes after total knee arthroplasty for post-traumatic arthritis. Knee 2015; 22 (06) 630-639
  • 122 Trattnig S, Welsch GH, Juras V. , et al. 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 2010; 257 (01) 175-184
  • 123 Zbýň S, Stelzeneder D, Welsch GH. , et al. Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 2012; 20 (08) 837-845
  • 124 Krusche-Mandl I, Schmitt B, Zak L. , et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage 2012; 20 (05) 357-363