Nervenheilkunde 2009; 28(11): 801-807
DOI: 10.1055/s-0038-1627153
Fortbildung
Schattauer GmbH

Autoantikörper gegen ganglionäre Azetylcholinrezeptoren und autoimmune autonome Gangliopathie

Autoantibodies against ganglionic acetylcholine receptors and autoimmune autonomic gangliopathy
H.-P. Seelig
1   Medizinisches Versorgungszentrum, Karlsruhe
› Author Affiliations
Further Information

Publication History

Eingegangen am: 18 March 2009

angenommen am: 20 March 2009

Publication Date:
20 January 2018 (online)

Zusammenfassung

Nikotinische Azetylcholinrezeptoren sind ligandengesteuerte Kationenkanäle, die in allen Bereichen des Nervensystems vorkommen. Autoantikörper gegen die ╒3-Untereinheit ganglionärer nikotinischer Azetylcholinrezeptoren (nAChR) werden bei etwa 50% der Patienten mit autoimmuner autonomer Gangliopathie (AAG) angetroffen. Die Autoantikörper sind wie bei der Myasthenia gravis die eigentlichen Verursacher der autonomen Störungen. Ihre Konzentration im Blut korreliert mit dem Schweregrad der autonomen Symptome, eine Reduktion der Antikörperkonzentration durch Plasmaaustausch oder Immunsuppressiva führt zu einer deutlichen Besserung der klinischen Symptome. Die AAG erfüllt die Kriterien einer echten Autoimmunerkrankung. Sie kann durch aktive und passive Immunisierung im Tiermodell imitiert werden. Die menschlichen und bei Tieren induzierten Antikörper hemmen dosisabhängig die Signalübertragung ganglionärer nAChR in rezeptortragenden Kulturzellen. Unklar ist noch, welche Faktoren die unterschiedliche Ausprägung der autonomen Symptome beeinflussen und ob eine unterschiedliche Feinspezifität der Autoantikörper oder zusätzliche Autoantikörper gegen weitere Untereinheiten der ganglionären nAChR für das Erscheinungsbild der Erkrankungen von Bedeutung sind.

Summary

Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels that are present throughout the nervous system. Antibodies against the ╒3-subunit of ganglionic nicotinic acetylcholine receptors are found in about 50% of patients suffering from an autoimmune autonomic gangliopathy (AAG). The serum levels of AChR-binding antibodies correlate with the severity of autonomic failure and a reduction of antibodies in the serum by means of plasma exchange or immunosuppression is followed by improvement in autonomic function. An animal model of the disease can be induced by active immunization of rabbits with ganglionic AChR and by passive administration of rabbit and human antibodies into mice. The antibodies inhibit in a dose-dependent manner the signal transfer of ganglionic AChR in neuroblastoma cells. It is unclear, which factors regulate the expression of different autonomic symptoms of the disease in patients and if other unknown antibodies against ganglionic receptors or antibodies against other structures engaged in autonomic signal transduction are also involved in different subgroups of the disease.

 
  • Literatur

  • 1 Arruda WO. et al. Autonomic neuropathy in systemic lupus erythematosus. J Neurol Neurosurg Psychiatry 1989; 52: 539-540.
  • 2 Baker SK, Morillo C, Vernino S. Autoimmune autonomic gangliopathy with late-onset encephalopathy. Atonom Neurosci 2009; 146: 29-32.
  • 3 Balestra B. et al. Antibodies against neuronal nicotinic receptor subtypes in neurological disorders. J Neuroimmunol 2000; 102: 89-97.
  • 4 Bertinotti L. et al. The autonomic nervous system in systemic sclerosis. A review. Clin Rheumatol 2004; 23: 1-5.
  • 5 Briani C. et al. Antibodies to muscle and ganglionic acetylcholine receptors (AchR) in celiac disease. Autoimmunity 2008; 41: 100-104.
  • 6 Camdessanche JP. et al. Paraneoplastic peripheral neuropathy associated with anti-Hu antibodies. A clinical and electrophysiological study of 20 patients. Brain 2002; 125: 166-175.
  • 7 Dalmau J. et al. Anti-Hu-associated paraneoplastic encephalomyelitis/sensory neuronopathy. A clinical study of 71 patients. Medicine 1992; 71: 59-72.
  • 8 Dhamija R. et al. Serologic profiles aiding the diagnosis of autoimmune gastrointestinal dysmotility. Clin Gastroenterol Hepatol 2008; 6: 989-992.
  • 9 Fitch RW. et al. Membrane potential fluorescence: a rapid and highly sensitive assay for nicotinic receptor channel function. Proc Natl Acad Sci USA 2003; 100: 4909-4914.
  • 10 Gibbons CH. et al. L-DOPS therapy for refractory orthostatic hypotension in autoimmune autonomic neuropathy. Neurology 2005; 65: 1104-1108.
  • 11 Gibbons CH, Vernino SA, Freeman R. Combined immunomodulatory therapy in autoimmune autonomic gangliopathy. Arch Neurol 2008; 65: 213-217.
  • 12 Gibbons CH, Freeman R. Antibody titers predict clinical features of autoimmune gangliopathy. Autonom Neurosci 2009; 146: 8-12.
  • 13 Goldstein DS. et al. Pandysautonomia associated with impaired ganglionic neurotransmission and circulating antibody to the neuronal nicotinic receptor. Clin Auton Res 2002; 12: 281-285.
  • 14 Goldstein DS, Holmes C, Imrich R. Clinical laboratory evaluation of autonomic gangliopathy. Autonom Neurosci 2009; 146: 18-21.
  • 15 Goto H. et al. Chronic autonomic neuropathy in a patient with primary Sjogren’s syndrome. J Neurol Neurosurg Psychiatry 2000; 69: 135.
  • 16 Graus F. et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain 2001; 124: 1138-1148.
  • 17 Hoyle C, Ewing DJ, Parker AC. Acute autonomic neuropathy in association with systemic lupus erythematosus. Ann Rheum Dis 1985; 44: 420-424.
  • 18 Iodice V. et al. Immunotherapy for autoimmune autonomic gangliopathy. Autonom Neurosci 2009; 146: 22-25.
  • 19 Klein CM. et al. The spectrum of autoimmune autonomic neuropathies. Ann Neurol 2003; 53: 752-758.
  • 20 Klein CM. Evaluation and management of autonomy neurons system disorders. Sem Neurol 2008; 28: 195-204.
  • 21 Kondo T. et al. Autoimmune autonomic gangliopathy with Sjögren’s syndrome: Significance of ganglionic acetylcholine receptor antibody and therapeutic approach. Autonom Neurosci 2009; 146: 33-35.
  • 22 Kovács L. et al. Cardiovascular autonomic dysfunction in primary Sjögren’s syndrome. Rheumatology 2004; 43: 95-99.
  • 23 Lennon VA. et al. Enteric neuronal autoantibodies in pseudo-obstruction with small-cell lung carcinoma. Gastroenterology 1991; 100: 137-142.
  • 24 Lennon VA. et al. Immunization with neuronal nicotinic acetylcholine receptor induces neurological autoimmune disease. J Clin Invest 2003; 111: 907-913.
  • 25 Lindstrom J. Neuronal nicotinic acetylcholine receptors. Ion Channels 1996; 4: 377-450.
  • 26 Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology 1998; 50: 652-657.
  • 27 Lukas RJ. Expression of ganglia-type nicotinic acetylcholine receptors and nicotinic ligand binding sites by cells of the IMR-32 human neuroblastoma clonal line. J Pharmacol Exp Ther 1993; 265: 294-302.
  • 28 Lukas RJ. et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 1999; 51: 397-401.
  • 29 Nelson ME, Lindstrom J. Single channel properties of human alpha3 AChRs: impact of beta2, beta4 and alpha5 subunits. J Physiol 1999; 516: 657-678.
  • 30 Nelson ME. et al. Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of alpha3beta4 AChRs expressed in permanently transfected HEK cells. J Gen Physiol 2001; 118: 563-582.
  • 31 Pande R, Leis AA. Myasthenia gravis, thymoma, intestinal pseudo-obstruction, and neuronal nicotinic acetylchoine receptor antibody. Muscle Nerve 1999; 22: 1600-1602.
  • 32 Pasha SF, Lunsford TN, Lennon VA. Autoimmune gastrointestinal dysmotility treated successfully with pyridostigmine. Gastroenterology 2006; 131: 1592-1596.
  • 33 Rakocevic G. et al. Myasthenia gravis, thymoma, and intestinal pseudoobstruction: a case report and review. J Clin Neuromusc Dis 2003; 5: 93-95.
  • 34 Richardson CE. et al. Megacystis-microcolon-intestinal hypoperistalsis syndrome and the absence of the alpha3 nicotinic acetylcholine receptor subunit. Gastroenterology 2001; 121: 350-357.
  • 35 Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunology Today 1993; 14: 426-430.
  • 36 Sandroni P, Low PA. Other autonomic neuropathies associated with ganglionic antibody. Autonom Neurosci 2009; 146: 13-17.
  • 37 Schroeder C. et al. Plasma Exchange for primary autoimmune autonomic failure. N Engl J Med 2005; 353: 1585-1590.
  • 38 Sciamanna MA. et al. Nicotinic acetylcholine receptors of muscle and neuronal (alpha7) types coexpressed in a small cell lung carcinoma. J Neurochem 1997; 69: 2302-2311.
  • 39 Skok MV. et al. Alpha subunit composition of nicotinic acetylcholine receptors in the rat autonomic ganglia neurons as determined with subunit-specific anti-alpha. Neuroscience 1999; 93: 1427-1436.
  • 40 Sorajja P. et al. Autonomic failure and proximal skeletal myopathy in a patient with primary Sjogren syndrome. Mayo Clin Proc 1999; 74: 695-697.
  • 41 Thieben MJ. et al. Postural orthostatic tachicardia syndrome: the Mayo Clinic experience. Mayo Clin Proc 2007; 82: 308-313.
  • 42 Tumilowicz JJ. et al. Definition of a continuous human cell line derived from neuroblastoma. Cancer Res 1970; 30: 2110-2118.
  • 43 Unwin N. Nicotinic acetylcholine receptor at 9 A resolution. J Mol Biol 1993; 229: 1101-1124.
  • 44 Vernino S. et al. Neuronal nicotinic ACh receptor antibody in subacute autonomic neuropathy and cancer-related syndromes. Neurology 1998; 50: 1806-1813.
  • 45 Vernino S, Lennon VA. New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Ann Neurol 2000; 47: 297-305.
  • 46 Vernino S. et al. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med 2000; 343: 847-855.
  • 47 Vernino S, Cheshire WP, Lennon VA. Myasthenia gravis with autoimmune autonomic neuropathy. Auton Neurosci 2001; 88: 187-192.
  • 48 Vernino S, Kryzer T, Lennon VA. Autoantibodies in autoimmune autonomic neuropathies and neuromuscular hyperexcitability disorders. In: Rose N, Hamilton R, Detrick B. (eds). Manual of clinical laboratory immunology. Washington: ASM Press; 2002
  • 49 Vernino S, Lennon VA. Ion channel and striational antibodies define a continuum of autoimmune neuromuscular hyperexcitability. Muscle Nerve 2002; 26: 702-707.
  • 50 Vernino S, Lennon VA. Neuronal ganglionic acetylcholine receptor autoimmunity. Ann N Y Acad Sci 2003; 998: 211-214.
  • 51 Vernino S, Low PA, Lennon VA. Experimental autoimmune autonomic neuropathy. J Neurophysiol 2003; 90: 2053-2059.
  • 52 Vernino S. et al. Passive transfer of autoimmune neuropathy to mice. J Neurosci 2004; 24: 7037-7042.
  • 53 Vernino S, Lennon VA. Autoantibody profiles and neurological correlations of thymoma. Clin Canc Res 2004; 10: 7270-7275.
  • 54 Vernino S. Experimental acetylcholine receptor autoimmunity coexisting myasthenia and autonomic failure. Neuromuscul Disord 2006; 16 (01) S180.
  • 55 Vernino S. et al. Characterization of ganglionic acetylcholine receptor autoantibodies. J Neuroimmunol 2008; 197: 63-69.
  • 56 Vernino S. Neuronal acetylcholine receptor autoimmunity. Ann N Y Acad Sci 2008; 1132: 124-128.
  • 57 Vernino S, Sandroni P, Singer W. Autonomic ganglia: target and novel therapeutic tool. Neurology 2008; 70: 1926-1932.
  • 58 Vernino S, Hopkins S, Wang Z. Autonomic ganglia, acetyle choline receptor antibodies, and autoimmune gangliopathy. Autonom Neurosci 2009; 146: 3-7.
  • 59 Wang F. et al. Chronic nicotinic treatment up-regulates human alpha3 beta2 but not alpha3 beta4 acetylcholine receptors stably transfectet in human embryonic kidney cells. J Biol Chem 1998; 273: 28721-28732.
  • 60 Wang Z. et al. Autoimmune autonomic gangliopathy. IgG effects on ganglionic acetylcholine receptor current. Neurology 2007; 68: 1917-1921.
  • 61 Watson R. et al. Alpha 7-acetylcholine receptor antibodies in two patients with Rasmussen encephalitis. Neurology 2005; 65: 1802-1804.
  • 62 Witebsky E. et al. Chronic thyroiditis and autoimmunization. J Am Med Assoc 1957; 164: 1439-1447.
  • 63 Wright RA, Grant IA, Low PA. Autonomic neuropathy associated with sicca complex. J Auton Nerv Syst 1999; 75: 70-76.
  • 64 Xu W. et al. Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 1999; 96: 5746-5751.
  • 65 Young RR. et al. Pure Pan-Dysautonomia with recovery. Trans Am Neurol Assoc 1969; 94: 355-357.
  • 66 Yu Z. et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol 2001; 49: 146-154.