Nervenheilkunde 2009; 28(11): 829-833
DOI: 10.1055/s-0038-1627160
Übersichtsarbeit
Schattauer GmbH

Neurobiologische Aspekte körperlicher Aktivität

Eine ÜbersichtNeurobiological aspects of physical activity
N.-U. Neumann
1   Klinik für Psychiatrie, Psychotherapie und Psychosomatik am Bezirkskrankenhaus Günzburg, Abteilung Psychiatrie II der Universität Ulm
,
K. Frasch
1   Klinik für Psychiatrie, Psychotherapie und Psychosomatik am Bezirkskrankenhaus Günzburg, Abteilung Psychiatrie II der Universität Ulm
› Author Affiliations
Further Information

Publication History

Eingegangen am: 30 October 2008

angenommen am: 09 October 2008

Publication Date:
20 January 2018 (online)

Zusammenfassung

Körperliche Aktivität, speziell regelmäßiges Ausdauertraining, nimmt positiven Einfluss nicht nur auf Körpergewicht, Herz-Kreislaufsystem und Bewegungsapparat, sondern auch auf den ZNS-Metabolismus. Über muskuläre Aktivität werden neurogenerative, neuroadaptive und neuroprotektive Mechanismen in Gang gesetzt. Tierexperimentelle Daten sprechen dafür, dass die erwähnten Vorgänge vor allem über neurotrophe Faktoren vermittelt werden. Auf funktioneller Ebene konnten tierexperimentell positive Effekte auf Lern- und Gedächtnisleistungen demonstriert werden. Im Bereich der Humanbiologie gibt es Hinweise darauf, dass körperliche Aktivität präventive und therapeutische Relevanz für die Adipositas und assoziierte Störungen wie beispielsweise metabolisches Syndrom, Typ-II-Diabetes und kardiovaskuläre Erkrankungen hat, aber auch für Krebserkrankungen sowie depressive und demenzielle Syndrome. Welche metabolischen und neuronalen Vorgänge und Wechselwirkungen zwischen aktivierter Muskulatur und ZNS zu den experimentell belegten neuro- und psychotropen Effekten führen, ist noch nicht hinreichend geklärt. Offen ist auch, über welche Mechanismen eine autonome Regulation der Motilität vonstatten geht.

Summary

Physical activity, especially aerobic endurance training, not only positively influences body weight, the cardiovascular and the musculoskeletal system but has also favourable effects on CNS metabolism. By means of muscular activity neurogenerative, neuroadaptive as well as neuroprotective modes of action are initiated. Animal experimental data suggest that these mechanisms are mediated by neurotrophic factors while favourable effects have most of all been demonstrated with regard to learning and memory performance. Concerning human beings, there is evidence that physical activity may be of preventive and therapeutic value regarding conditions like obesity, the metabolic syndrome, type II diabetes and cardiovascular diseases on the one hand as well as even malignant neoplasms, dementias and depressive syndromes on the other. The exact nature of the underlying metabolic and neural interactions between activated muscles and the CNS are still unknown, as are the mechanisms accounting for autonomic regulation of spontaneous motor activity.

 
  • Literatur

  • 1 Alderson RF. et al. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 1990; 5: 297-306.
  • 2 Altar CA. et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signalling pathways. J Neurosi 2004; 24: 2667-2677.
  • 3 Bäckman C. et al. Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J Neurosci 1996; 16: 5437-42.
  • 4 Barrientos RM. et al. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin- 1 receptor antagonist. Neuroscience 2003; 121: 847-853.
  • 5 Berchtold NC. et al. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J Neurosci 2001; 14: 1992-2002.
  • 6 Bi S. et al. Running wheel exercise prevents the hyperphagia and obesity of OLETF rats: role of hypothalamic signaling. Endocrinology 2005; 146: 1676-85.
  • 7 Bjornebekk A, Mathe AA, Brene S. The antidepressant effect of running is associated with increased hippocampal cell proliferation. Int J Neuropsychopharmacol 2005; 8: 357-68.
  • 8 Blundell JE. et al. Cross talk between physical activity and appetite control: does physical activity stimulate appetite?. Proc Nutrition Soc 2003; 62: 651-61.
  • 9 Bramble DM, Liebermann DE. Endurance running and the evolution of Homo. Nature 2004; 432: 345-52.
  • 10 Bonhoeffer T. Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 1996; 6: 119-126.
  • 11 Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76: 99-125.
  • 12 Briones TL. Environment, physical activity, and neurogenesis: implications for prevention and treatment of Alzheimer`s disease. Curr Alzheimer Res 2006; 3: 49-54.
  • 13 Carro E. et al. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 2000; 20: 2926-33.
  • 14 Carro E. et al. Brain repair and neuroprotection by serum insulin-like growth factor I. Mol Neurobiol 2003; 27: 153-62.
  • 15 Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycaemic damage by stabilizing calcium homeostasis. Neuron 1991; 7: 1031-41.
  • 16 Cotman CW, Berchtold NC. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25: 295-301.
  • 17 Dalsgaard MK. et al. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol 2004; 554: 571-8.
  • 18 Delp M. et al. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J Physiol 2001; 533: 849-59.
  • 19 Donnelly JE. et al. Effects of a 16-month randomized controlled exercise trial on body weight and composition in young, overweight men and women: the Midwest Exercise Trial. Arch Intern Med 2003; 163: 1343-50.
  • 20 Doucet E. et al. Physical activity and low-fat diet: is it enough to maintain weight stability in the reducedobese individual following weight loss by drug therapy and energy restriction?. Obes Res 1999; 7: 323-33.
  • 21 Farmer J. et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 2004; 124: 71-79.
  • 22 Fischer CP. Interleukin-6 in acute exercise and training. What is the biological relevance?. Exerc Immunol Rev 2006; 12: 6-33.
  • 23 Ford ES, Li C. Physical activity or fitness and the metabolic syndrome. Expert Rev Cardiovasc Ther 2006; 4: 897-915.
  • 24 Fox EA, Byerly MS. A mechanism underlying mature onset obesity: evidence from hyperphagic phenotype of brain-derived neurotrophic factor mutants. Am J Physiol Regul Integr Comp Physiol 2004; 286: 994-1004.
  • 25 Frey-Hewitt B. et al. The effect of weight loss by dieting or exercise on resting metabolic rate in overweight men. Int J Obes Relat Metab Disord 1990; 14: 324-34.
  • 26 Gandevia SC. et al. Pespiratory sensations, cardiovascular control, kinaesthesia and transcranial stimulation during paralysis in humans. J Physiol 1993; 470: 85-107.
  • 27 Gandevia SC. Spinal and supraspinal factors in human muscel fatigue. Physiol Rev 2001; 81: 1725-89.
  • 28 Gans RO. The metabolic syndrome, depression and cardiovascular disease: interrelated conditions that share pathophysiologic mechanism. Med Clin North Am 2006; 90: 573-91.
  • 29 Gomez-Pinilla F. et al. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 2002; 88: 2187-95.
  • 30 Gomez-Pinilla F. et al. Activity is required to maintain basal levels of neurotrophins and neuroplasticity in the spinal cord. J Neurophysiol 2004; 92: 3423-32.
  • 31 Hairston IS. et al. Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in mediation of delta power. J Neurophysiol 2003; 91: 1586-1595.
  • 32 Hartmann M, Heumann R, Lessmann V. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J 2001; 20: 5887-97.
  • 33 Haslam DW, James WP. Obesity. Lancet 2005; 366: 1197-1209.
  • 34 Hattori S, Naoi M, Nishino H. Striatal dopamine turnover durino treadmill running in the rat: relation to the speed of running. Brain Res Bull 1994; 35: 41-49.
  • 35 Hill JO, Davis JR, Tagliaferro AR. Effects of diet and exercise training on thermogenesis in adult female rats. Physiol Behav 1983; 31: 133-5.
  • 36 Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol 2000; 61: 397-414.
  • 37 Kjaer M. et al. Hormonal and metabolic responses to electrically induced cycling during epidural anaesthesia in humans. J Appl Physiol 1996; 80: 2156-62.
  • 38 Klem ML. et al. A descriptive study of individuals successful at long-term maintenance of substantial weight loss. Am J Clin Nutr 1997; 66: 239-46.
  • 39 Koizumi H. et al. Association between the brain-derived neurotrophic factor 196G/A polymorphism and eating disorders. Am J Med Gent 2004; 127: 125-127.
  • 40 Laske C, Eschweiler G. Brain-derived neurotrophic factor. Vom Nervenwachstumsfaktor zum Plastizitätsmodulor bei kognitiven Prozessen und psychischen Erkrankungen. Nervenarzt 2006; 77: 523-537.
  • 41 Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci 1996; 19: 289-317.
  • 42 Li J. et al. Neuroprotection against transient cerebral ischemia by exercise preconditioning in rats. Neurol Res 2004; 26: 404-8.
  • 43 Lou SJ. et al. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res. 2008; 1210: 48-55.
  • 44 Mayer J. et al. Exercise, food intake and body weight in normal rats and genetically obese adult mice. Am J Physiol 1954; 177: 544-8.
  • 45 McAllister AK. et al. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15: 791-803.
  • 46 McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 1999; 22: 295-318.
  • 47 McCall GE. et al. Spaceflight suppresses exercise-induced release of bioassayable growth hormone. J Appl Physiol 1999; 87: 1207-12.
  • 48 McGuire MT, Wing RR, Hill JO. Behavioral strategies of individuals who have maintained longterm weight losses. Obes Res 1999; 7: 334-41.
  • 49 Molteni R, Ying Z, Gòmes-Pinilla F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 2002; 16: 1107-16.
  • 50 Neeper SA. et al. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 1996; 726: 49-56.
  • 51 Neumann NU, Frasch K. Neue Aspekte zur Lauftherapie bei Demenz und Depression – klinische und neurowissenschaftliche Grundlagen. Dtsch Z Sportmed 2008; 59: 28-33.
  • 52 Nistico F. et al. NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidise activity in the brain of aged rats. Free Radic Biol Med 1992; 12: 177-81.
  • 53 Nybo L. et al. Interleukin-6 release from the human brain during prolonged exercise. J Physiol 2002; 542: 991-5.
  • 54 Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 2004; 72: 223-61.
  • 55 Pedersen BK. et al. Searching for the exercise factor: is IL-6 a candidate?. J Muscle Res Cell Motility 2003; 24: 113-19.
  • 56 Pelleymounter MA. et al. The effects of intrahippocampal BDNF and BGF on spatial learning in aged Long Evans rats. Mol Chem Neuropathol 1996; 29: 211-26.
  • 57 Pilegaard H, Ordway GA, Saltin B, Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 2000; 279: 806-14.
  • 58 Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci 2001; 2: 24-32.
  • 59 Radak Z. et al. Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 2001; 38: 27-33.
  • 60 Reimers CD. Gesundheitliche Auswirkungen körperlicher Aktivität. In: Reimers CD, Broocks A. (Hrsg). Neurologie, Psychiatrie und Sport. Thieme, Stuttgart, New York: 2003: 46-55.
  • 61 Rhodes JS, Garland Jr T, Gammie SC. Patterns of brain activity associated with variation in voluntary wheel-running behavior. Behav Neurosci 2003; 117: 1243-56.
  • 62 Russo-Neustadt AA. et al. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neurosci 2000; 101: 305-12.
  • 63 Salamone JD. et al. Nucleus accumbens dopamine and the regulation of effort in food-seeking behaviour. Implications for studies of natural motivation, psychiatry and drug abuse. J Pharm Exp Therap 2003; 305: 1-8.
  • 64 Smith AD, Zigmond MJ. Can the brain be protected through exercise? Lessons form an animal model of parkinsonism. Exp Neurol 2003; 184: 31-39.
  • 65 Tong L. et al. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 2001; 8: 1046-56.
  • 66 Troxell ML, Britton SL, Koch LG. Selected contribution: variation and heritability for the adaptational response to exercise in genetically heterogeneous rats. J Appl Physiol 2003; 94: 1674-81.
  • 67 Tou JC, Wade CE. Determinants affecting physical activity levels in animal models. Exp Biol Med 2002; 227: 587-600.
  • 68 Ullrich A, Gray A, Berman C, Dull TJ. Human betanerve growth factor gene sequence highly homologous to that of the mouse. Nature 1983; 303: 821-25.
  • 69 van Praag H. et al. Running enhances neurogenesis, learning and long-term potentiation in mice. Proc Natl Acad Sci USA 1995; 96: 13427-31.
  • 70 van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 2: 266-70.
  • 71 Vaynman S, Ying Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neurosci 2003; 122: 647-57.
  • 72 Vaynman S, Ying Z, Gomes-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 2004; 20: 2580-90.
  • 73 Vaynman SS. et al. Exercise differentially regulates synaptic protein associated to the function of BDNF. Brain Res 2006; 1070: 124-30.
  • 74 Wing RR, Hill JO. Successful weight loss maintenance. Ann Rev Nutr 2003; 21: 323-41.
  • 75 Woo R, Garrow JS, Pi-Sunyer FX. Voluntary food intake during prolonged exercise in obese women. Am J Clin Nutr 1982; 36: 478-84.
  • 76 Wu CW. et al. Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neural progenitor cells in dentate gyrus of middleaged mice. J Appl Physiol 2008; 105: 1585-1594.