Nervenheilkunde 2014; 33(11): 761-770
DOI: 10.1055/s-0038-1627743
Mikroglia
Schattauer GmbH

Mikroglia und immunologische Mechanismen in der neuropsychiatrischen Forschung

Implikationen für neue therapeutische AnsätzeMicroglia and immunology mechanism in neuropsychiatry research
N. Müller
1   Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München
,
M. J. Schwarz
2   Klinik für Psychiatrie und Psychotherapie, Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität München
,
B. Leitner
1   Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München
,
E. Weidinger
1   Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität München
› Author Affiliations
Further Information

Publication History

eingegangen am: 01 July 2014

angenommen am: 14 July 2014

Publication Date:
24 January 2018 (online)

Zusammenfassung

Die Psychoneuroimmunologie beschäftigt sich mit den Wechselwirkungen zwischen der (gesunden) Psyche, psychischen Störungen und dem Immunsystem. Inzwischen hat sich gezeigt, dass zumindest bei Subgruppen psychischer Störungen wie Schizophrenie und Depression ein entzündlicher Prozess bei der Pathogenese eine Rolle spielt. Da für Schizophrenie und Depression auf diesem Gebiet die meisten Befunde vorliegen, konzentriert sich diese Übersicht auf diese beiden Störungsbilder. Die differenzielle Aktivierung von Mikrogliazellen und Astrozyten als funktionelle Träger des Immunsystems im ZNS, trägt zur Typ-1/Typ-2-Inbalance bei. Das entzündliche Geschehen ist verbunden mit höherer Prostaglandin-E2 (PGE-2)-Produktion und erhöhter Cyclooxygenase-2 (COX-2)-Expression. Zunehmende Evidenz aus klinischen Studien mit COX-2-Inhibitoren weisen auf einen günstigen Effekt antiinflammatorischer Therapie bei Schizophrenie hin, speziell in frühen Stadien der Krankheit. Sowohl bei Depression als auch bei Schizophrenie ist die Vulnerabilitäts- Stress-Hypothese weitgehend akzeptiert. So zeigte sich z. B. dass – bei entsprechender genetischer Disposition – Stress im frühen Lebensalter oder Separationsstress mit einem Anstieg proinflammatorischer Zytokine einhergehen und zu einer Immunaktivierung führen. Die Interaktionen zwischen dem Immunsystem, Neurotransmittern und dem Tryptophan- Kynurenin-System sind entscheidende Komponenten für die Pathogenese von Stress und Depression. Eine antientzündliche Behandlung, z. B. mit dem COX-2-Inhibitor Celecoxib, zeigt antidepressive Effekte.

Summary

The topic of psychoneuroimmunology is the interaction between (healthy) psychic processes, psychiatric disorders and the immune system. It could be shown that at least in subgroups of psychiatric disorders such as schizophrenia or major depression an inflammatory process plays a key role. Since most of the findings were obtained in schizophrenia and major depression, this review focusses on these disorders. The differential activation of microglia and astrocytes as part of the central nervous system (CNS) immunity contributes to the type-1/type-2 immune inbalance. The inflammation is associated with higher prostaglandin E2 (PGE2) production and higher cyclo-oxygenase 2 (COX 2) expression. Increasing evidence from clinical studies with COX 2 inhibitors points to an advantageous effect of anti-inflammatory therapy in schizophrenia especially in early stages of the disease. The vulnerability-stress hypothesis is widely accepted both, in schizophrenia and in major depression. It has been shown that – often based on genetic disposition – early live stress or separation stress are associated with an increase of pro-inflammatory cytokines leading to an activation of the immune system and pro-inflammatory prostaglandins. In the CNS, the activation of microglia is crucial. The interactions between the immune system and neuro - transmitters, the tryptophan-kynurenine system, and the glutatmatergic neurotransmission are further links between stress, depression and the immune system. Accordingly, anti-inflammatory therapy, e. g. with the COX 2 inhibitor celecoxib is effective in depression.

 
  • Literatur

  • 1 Akhondzadeh S. et al. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety 2009; 26: 607-611.
  • 2 Akhondzadeh S. et al. Celecoxib as adjunctive therapy in schizophrenia: a double-blind, randomized and placebo-controlled trial. Schizophr Res 2007; 90: 179-185.
  • 3 Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 2000; 21: 141-147.
  • 4 Arolt V. et al. Decreased in vitro production of interferon-gamma and interleukin-2 in whole blood of patients with schizophrenia during treatment. Mol Psychiatry 2000; 05: 150-158.
  • 5 Avgustin B, Wraber B, Tavcar R. Increased Th1 and Th2 immune reactivity with relative Th2 dominance in patients with acute exacerbation of schizophrenia. Croat Med J 2005; 46: 268-274.
  • 6 Balschun D. et al. Interleukin-6: a cytokine to forget. FASEB J 2004; 18: 1788-1790.
  • 7 Bayer TA. et al. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271: 126-128.
  • 8 Bechter K. Mild encephalitis underlying psychiatric disorders – A reconsideration and hypothesis exemplified on Borna disease. Neurol Psychiatry Brain Res 2001; 09: 55-70.
  • 9 Bechter K. et al. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J Psychiatr Res 2010; 44: 321-330.
  • 10 Bernstein HG, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 2009; 09: 1059-1071.
  • 11 Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 08: 57-69.
  • 12 Bonartsev PD. (An electron microscopic study of typical lymphocytes and atypical cells of peripheral blood in patients with schizophrenia). Zh Nevrol Psikhiatr Im S S Korsakova 2008; 108: 62-68.
  • 13 Braida D. et al. Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav Brain Res 2004; 153: 423-429.
  • 14 Bresee C, Rapaport MH. Persistently increased serum soluble interleukin-2 receptors in continuously ill patients with schizophrenia. Int J Neuropsychopharmacol 2009; 12: 861-865.
  • 15 Brown AS. The risk for schizophrenia from childhood and adult infections. Am J Psychiatry 2008; 165: 7-10.
  • 16 Brown AS. et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 2004; 61: 774-780.
  • 17 Bruce LC, Peebles AMS. Clinical and experimental observations in catatonia. J Ment Sci 1903; 49: 614-628.
  • 18 Buka SL. et al. Maternal recall of pregnancy history: accuracy and bias in schizophrenia research. Schizophr Bull 2000; 26: 335-350.
  • 19 Casolini P. et al. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 2002; 68: 337-343.
  • 20 Chittiprol S. et al. Oxidative stress and neopterin abnormalities in schizophrenia: a longitudinal study. J Psychiatr Res 2010; 44: 310-313.
  • 21 Cumiskey D. et al. A role for inflammatory mediators in the IL-18 mediated attenuation of LTP in the rat dentate gyrus. Neuropharmacology 2007; 52: 1616-1623.
  • 22 Dalman C. et al. Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than one million Swedish subjects. Am J Psychiatry 2008; 165: 59-65.
  • 23 Dameshek W. White blood cells in dementia praecox and dementia paralytietwa. Arch Neurol Psychiatry 1930; 24: 855.
  • 24 Danese A. et al. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry 2008; 65: 409-415.
  • 25 Downes CE, Crack PJ. Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS?. Br J Pharmacol 2010; 160: 1872-1888.
  • 26 Drexhage RC. et al. The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 2010; 10: 59-76.
  • 27 Duch DS. et al. Urinary excretion of biopterin and neopterin in psychiatric disorders. Psychiatry Res 1984; 11: 83-89.
  • 28 Frank MG. et al. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 2007; 21: 47-59.
  • 29 Furukawa H. et al. Interleukin-1, but not stress, stimulates glucocorticoid output during early postnatal life in mice. Ann N Y Acad Sci 1998; 840: 117-22.
  • 30 Gattaz WF, Abrahao AL, Foccacia R. Childhood meningitis, brain maturation and the risk of psychosis. Eur Arch Psychiatry Clin Neurosci 2004; 254: 23-26.
  • 31 Gimeno D, Marmot MG, Singh-Manoux A. Inflammatory markers and cognitive function in middle-aged adults: the Whitehall II study. Psychoneuroendocrinology 2008; 33: 1322-1334.
  • 32 Haack M. et al. Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 1999; 33: 407-418.
  • 33 Häfner S. et al. C-reactive protein is associated with polymorphisms of the angiotensin-converting enzyme gene in major depressed patients. J Psychiatr Res 2008; 42: 163-165.
  • 34 Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387-1394.
  • 35 Hayley S, Wall P, Anisman H. Sensitization to the neuroendocrine, central monoamine and behavioural effects of murine tumor necrosis factoralpha: peripheral and central mechanisms. Eur J Neurosci 2002; 15: 1061-1076.
  • 36 Herbert TB, Cohen S. Depression and immunity: a meta-analytic review. Psychol Bull 1993; 113: 472-486.
  • 37 Heyser CJ. et al. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc Natl Acad Sci USA 1997; 94: 1500-1505.
  • 38 Irwin M. Immune correlates of depression. Adv Exp Med Biol 1999; 461: 1-24.
  • 39 Jack CS. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005; 175: 4320-4330.
  • 40 Kipnis J. et al. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci USA 2004; 101: 8180-8185.
  • 41 Knight JG. Dopamine-receptor-stimulating autoantibodies: a possible cause of schizophrenia. Lancet 1982; 02: 1073-1076.
  • 42 Koponen H. et al. Childhood central nervous system infections and risk for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2004; 254: 9-13.
  • 43 Körschenhausen DA. et al. Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr Res 1996; 19: 103-109.
  • 44 Korte S. et al. Increased serum neopterin levels in acutely ill and recovered schizophrenic patients. Schizophr Res 1998; 32: 63-67.
  • 45 Lambertsen KL. et al. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009; 29: 1319-1330.
  • 46 Lanquillon S. et al. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 2000; 22: 370-379.
  • 47 Lehmann-Facius H. Serologisch-analytische Versuche mit Liquores und Seren von Schizophrenen. Allg Z Psychiatrie 1939; 110: 232-243.
  • 48 Litherland SA. et al. Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest 1999; 104: 515-523.
  • 49 Maes M. et al. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 1995; 29: 141-152.
  • 50 Maes M. et al. Acute phase proteins in schizophrenia, mania and major depression: modulation by psychotropic drugs. Psychiatry Res 1997; 66: 1-11.
  • 51 Maes M, Meltzer HY, Bosmans E. Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand 1994; 89: 346-351.
  • 52 Maes M. et al. Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord 1995; 34: 301-309.
  • 53 Maes M. et al. Plasma-soluble interleukin-2 and transferrin receptor in schizophrenia and major depression. Eur Arch Psychiatry Clin Neurosci 1995; 244: 325-329.
  • 54 Mayilyan KR. et al. Increased complement classical and mannan-binding lectin pathway activities in schizophrenia. Neurosci Lett 2006; 404: 336-341.
  • 55 Melnikova T. et al. Cycloxygenase-2 activity promotes cognitive deficits but not increased amyloid burden in a model of Alzheimer’s disease in a sexdimorphic pattern. Neuroscience 2006; 141: 1149-1162.
  • 56 Meyer U, Feldon J, Fatemi SH. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev 2009; 33: 1061-1079.
  • 57 Meyer U, Schwarz MJ, Müller N. Inflammatory processes in schizophrenia: a promising neuroimmunological target for the treatment of negative/ cognitive symptoms and beyond. Pharmacol Ther 2011; 132: 96-110.
  • 58 Mikova O. et al. Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 2001; 11: 203-208.
  • 59 Miller BJ. et al. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663-671.
  • 60 Mittleman BB. et al. Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol 1997; 159: 2994-2999.
  • 61 Molholm HB. Hyposensitivity to foreign protein in schizophrenic patients. Psychiatr Quarterly 1942; 16: 565-571.
  • 62 Müller N. Stress-, Immunsystem und Stimmung. Die Rolle des Immunsystems bei stressinduzierten Störungen und Depression. Persönlichkeitsstörungen 2012; 16: 96-105.
  • 63 Müller N. Immunologische Behandlungsoptionen bei schizophrenen Störungen. Fortschr Neurol Psychiatr 2013; 82: 210-219.
  • 64 Müller N. et al. Cellular immunity in schizophrenic patients before and during neuroleptic treatment. Psychiatry Res 1991; 37: 147-160.
  • 65 Müller N, Bechter K. The mild encephalitis concept for psychiatric disorders revisited in the light of current psychoneuroimmunological findings. Neurology, Psychiatry and Brain Research 2013; 19: 87-101.
  • 66 Müller N. et al. Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur Arch Psychiatry Clin Neurosci 1997; 247: 308-313.
  • 67 Müller N. et al. Investigations of the cellular immunity during depression and the free interval: evidence for an immune activation in affective psychosis. Prog Neuropsychopharmacol Biol Psychiatry 1993; 17: 713-730.
  • 68 Müller N. et al. Celecoxib treatment in an early stage of schizophrenia: Results of a randomized, double-blind, placebo-controlled trial of celecoxib augmentation of amisulpride treatment. Schizophr Res 2010; 121: 119-124.
  • 69 Müller N. et al. Is the therapeutic effect of celecoxib in schizophrenia depending from duration of disease?. Neuropsychopharmacology 2004; 29: 176.
  • 70 Müller N. et al. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 2002; 159: 1029-1034.
  • 71 Müller N. et al. Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2005; 255: 149-151.
  • 72 Müller N, Schwarz MJ. Immunology in anxiety and depression. In: Kasper S, den Boer JA, Sitsen JMA. (eds) Handbook of depression and anxiety. New York: Marcel Dekker; 2002: 267-288.
  • 73 Müller N. et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular Psychiatry 2006; 11: 680-684.
  • 74 Müller N. et al. COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 2004; 254: 14-22.
  • 75 Müller N. et al. Impaired monocyte activation in schizophrenia. Psychiatry Res 2012; 198: 341-346.
  • 76 Murr C. et al. Neopterin as a marker for immune system activation. Curr Drug Metab 2002; 03: 175-187.
  • 77 Na KS, Kim YK. Monocytic, Th1 and th2 cytokine alterations in the pathophysiology of schizophrenia. Neuropsychobiology 2007; 56: 55-63.
  • 78 Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol 2006; 171: 72-85.
  • 79 Naudin J. et al. Elevated circulating levels of IL-6 in schizophrenia. Schizophr Res 1996; 20: 269-273.
  • 80 Nikkilä HV. et al. Increased frequency of activated lymphocytes in the cerebrospinal fluid of patients with acute schizophrenia. Schizophr Res 2001; 49: 99-105.
  • 81 Nitta M. et al. Adjunctive use of nonsteroidal antiinflammatory drugs for schizophrenia: a metaanalytic investigation of randomized controlled trials. Schizophr Bull 2013; 39: 1230-1241.
  • 82 Nunes SOV. et al. Immune and hormonal activity in adults suffering from depression. Braz J Med Biol Res 2002; 35: 581-587.
  • 83 Ogawa A. et al. The differential role of L-selectin and ICAM-1 in Th1-type and Th2-type contact hypersensitivity. J Invest Dermatol 2010; 130: 1558-1570.
  • 84 Pace TW. et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry 2006; 163: 1630-1633.
  • 85 Potvin S. et al. Inflammatory Cytokine Alterations in Schizophrenia: A Systematic Quantitative Review. Biol Psychiatry 2008; 63: 801-808.
  • 86 Radewicz K. et al. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 2000; 59: 137-150.
  • 87 Rapaport MH. et al. Celecoxib augmentation of continuously ill patients with schizophrenia. Biol Psychiatry 2005; 57: 1594-1596.
  • 88 Riedel M. et al. Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res 2007; 41: 3-7.
  • 89 Rothermundt M. et al. Different immune patterns in melancholic and non-melancholic major depression. Eur Arch Psychiatry Clin Neurosci 2001; 251: 90-97.
  • 90 Rothermundt M. et al. Immunological dysfunction in schizophrenia: a systematic approach. Neuropsychobiology 1998; 37: 186-193.
  • 91 Rothermundt M. et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 2004; 09: 897-899.
  • 92 Rudduck C. et al. C3 and C6 complement types in schizophrenia. Hum Hered 1985; 35: 255-258.
  • 93 Schennach H. et al. Factors influencing serum neopterin concentrations in a population of blood donors. Clin Chem 2002; 48: 643-645.
  • 94 Schwarz MJ. et al. Decreased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol Psychiatry 2000; 47: 29-33.
  • 95 Schwieler L. et al. Prostaglandin-mediated control of rat brain kynurenic acid synthesis – opposite actions by COX-1 and COX-2 isoforms. J Neural Transm 2005; 112: 863-872.
  • 96 Seidel A. et al. Major depressive disorder is associated with elevated monocyte counts. Acta Psychiatr Scand 1996; 94: 198-204.
  • 97 Shintani F. et al. Serum interleukin-6 in schizophrenic patients. Life Sci 1991; 49: 661-664.
  • 98 Sommer IE. et al. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry 2012; 73: 414-419.
  • 99 Sparkman NL, Johnson RW. Neuroinflammation associated with aging sensitizes the brain to the effects of infection or stress. Neuroimmunomodulation 2008; 15: 323-330.
  • 100 Sperner-Unterweger B. et al. Measurement of neopterin, kynurenine and tryptophan in sera of schizophrenic patients. In: Müller N. (ed) Psychiatry, Psychoimmunology, and viruses. Wien: Springer; 1999: 115-119.
  • 101 Steiner J. et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res 2008; 42: 151-157.
  • 102 Suvisaari J. et al. Inflammation in psychotic disorders: a population-based study. Psychiatry Res 2011; 189: 305-311.
  • 103 Varga G. et al. LFA-1 contributes to signal I of T-cell activation and to the production of T(h)1 cytokines. J Invest Dermatol 2010; 130: 1005-1012.
  • 104 Wierzba-Bobrowicz T. et al. Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 2005; 43: 81-89.
  • 105 Wilke I. et al. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 1996; 246: 279-284.
  • 106 Wong CT, Tsoi WF, Saha N. Acute phase proteins in male Chinese schizophrenic patients in Singapore. Schizophr Res 1996; 22: 165-171.
  • 107 Zhang Y. et al. A double-blind, placebo-controlled trial of celecoxib addes to risperidone in first-episode and drug-naive patients with schizophrenia. 2006 II/50.
  • 108 Zhou D. et al. Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology 1993; 133: 2523-2530.
  • 109 Zubin J, Spring B. Vulnerability – a new view of schizophrenia. J Abnorm Psychol 1977; 86: 103-126.
  • 110 Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 2005; 39: 311-323.