Nervenheilkunde 2018; 37(05): 340-346
DOI: 10.1055/s-0038-1651945
Schizophrenie
Schattauer GmbH

Verbesserung der kognitiven Leistungsfähigkeit von Patienten mit Schizophrenie durch transkranielle Gleichstromstimulation

Improving cognitive symptoms in patients with schizophrenia with transcranial direct current stimulation
T Schwippel
1   Klinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Eberhard Karls Universität Tübingen
,
A Hasan
2   Klinikum der Universität München, Ludwig-Maximilians University München
,
I Papazova
2   Klinikum der Universität München, Ludwig-Maximilians University München
,
A. J Fallgatter
1   Klinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Eberhard Karls Universität Tübingen
,
C Plewnia
1   Klinik für Psychiatrie und Psychotherapie, Neurophysiologie & Interventionelle Neuropsychiatrie, Eberhard Karls Universität Tübingen
› Author Affiliations
Further Information

Publication History

eingegangen am: 02 February 2018

angenommen am: 05 March 2018

Publication Date:
02 May 2018 (online)

Zusammenfassung

Kognitive Störungen sind ein Kernaspekt der Schizophrenie und beeinflussen das Langzeitergebnis der Behandlung, die Mortalität und die Lebensqualität der Patienten. Medikamentöse Behandlungsversuche erbrachten wenig zufriedenstellende Resultate, wohingegen das Training kognitiver Leistungen durchaus wirksam sein kann. Eine noch unzureichende Effektstärke und Generalisierbarkeit der Trainingserfolge sowie der hoher Zeitaufwand limitieren den generellen klinischen Einsatz. In einem innovativen Ansatz soll untersucht werden, ob eine Augmentation des kognitiven Trainings mit transkranieller Gleichstromstimulation (tDCS) den Effekt des Trainings und damit die klinische Anwendbarkeit verbessern kann. Mit der tDCS steht ein nebenwirkungsarmes Verfahren zur Verfügung, mit welchem der Aktivitätszustand des Gehirns polaritätsabhängig moduliert werden kann. Hierbei wird über zwei Elektroden schwacher Gleichstrom appliziert, welcher zur Veränderung des Ruhemembranpotenzials kortikaler Neurone führt und es ermöglicht dadurch die Erregbarkeit neuronaler Netzwerke gezielt zu modulieren. Die Kombination von Training und tDCS kann synergistisch zur Unterstützung adaptiver neuroplastischer Prozesse eingesetzt werden und möglicherweise die Effektivität eines kognitiven Trainings bei Patienten mit Schizophrenie verbessern. Dies könnte dazu beitragen die Erholung von Beeinträchtigungen kognitiver Funktionen bei an Schizophrenie erkrankten Menschen wirkungsvoll zu unterstützen und ihre Lebensqualität zu steigern.

Summary

Cognitive deficits are a core aspect of schizophrenia and significantly influence long-term outcome, mortality and quality of life of patients. So far, pharmacological treatment approaches yielded unsatisfactory results, whereas the training of cognitive abilities can be effective. However, size and generalization of training effects are in need for improvement and the high time expenditure is limiting a broad clinical use. To enhance effectiveness and foster clinical applicability, augmentation of cognitive training with transcranial direct current stimulation (tDCS) is currently investigated. Transcranial direct current stimulation is a safe and well tolerated procedure to modulate brain activity in a polarity specific manner. For this purpose, a weak current is applied to the scalp via rubber electrodes which transiently changes the resting membrane potential and consequently the excitability of cortical neurons. Therefore, tDCS allows for a targeted modulation of brainnetwork activity. As a next step, the combination of cognitive training and tDCS might synergistically induce adaptive neuroplastic processes and potentially increase the effectiveness of cognitive training paradigms. In patients with schizophrenia, this novel approach could contribute to the recovery of cognitive functions and improve quality of life.

 
  • Literatur

  • 1 Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV. Stability and course of neuropsychological deficits in schizophrenia. Arch Gen Psychiat 2001; 58 (01) 24-32.
  • 2 Palmer BW, Heaton RK, Paulsen JS, Kuck J, Braff D, Harris MJ. et al. Is it possible to be schizophrenic yet neuropsychologically normal?. Neuropsychology 1997; 11 (03) 437-46.
  • 3 Green MF, Kern RS, Heaton RK. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 2004; 72 (01) 41-51.
  • 4 Niendam TA, Bearden CE, Rosso IM, Sanchez LE, Hadley T, Nuechterlein KH. et al. A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. Am J Psychiat 2003; 160 (11) 2060-2.
  • 5 Horan WP, Braff DL, Nuechterlein KH, Sugar CA, Cadenhead KS, Calkins ME. et al. Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: Findings from the Consortium on the Genetics of Schizophrenia. Schizophr Res 2008; 103 (1-3): 218-28.
  • 6 Snitz BE, MacDonald III AW, Carter CS. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. 2005
  • 7 Green MF. Impact of cognitive and social cognitive impairment on functional outcomes in patients with schizophrenia. The Journal of clinical psychiatry 2016; 77: 8-11.
  • 8 Kurtz MM, Bronfeld M, Rose J. Cognitive and social cognitive predictors of change in objective versus subjective quality-of-life in rehabilitation for schizophrenia. Psychiat Res 2012; 200 (2-3): 102-7.
  • 9 Green MF. What are the functional consequences of neurocognitive deficits in schizophrenia?. The American journal of psychiatry 1996; 153 (03) 321.
  • 10 Knapp M, Mangalore R, Simon J. The global costs of schizophrenia. Schizophrenia Bull 2004; 30 (02) 279-93.
  • 11 Baddeley A. Working memory and conscious awareness. Theories of memory: Lawrence Erlbaum Associates; 1992: 11-20.
  • 12 Forbes NF, Carrick LA, McIntosh AM, Lawrie SM. Working memory in schizophrenia: a meta-analysis. Psychological Medicine 2009; 39 (06) 889-905.
  • 13 Rajji TK, Ismail Z, Mulsant BH. Age at onset and cognition in schizophrenia: meta-analysis. Brit J Psychiat 2009; 195 (04) 286-93.
  • 14 D’Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol 2015; 66: 115-42.
  • 15 Manoach DS. Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 2003; 60 (2-3): 285-98.
  • 16 Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR. et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiat 2001; 158 (11) 1809-17.
  • 17 Senkowski D, Gallinat J. Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiat 2015; 77 (12) 1010-9.
  • 18 Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R. et al. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA psychiatry 2015; 72 (04) 316-24.
  • 19 Morel BA. Traité des maladies mentales: Victor Masson. 1860
  • 20 Kraepelin E. Lehrbuch der Psychiatrie. Leipzig: Barth; 1896
  • 21 Nielsen R, Levander S, Kjaersdam GTelleus, Jensen S, Östergaard TChristensen, Leucht S. Second-generation antipsychotic effect on cognition in patients with schizophrenia - a meta-analysis of randomized clinical trials. Acta Psychiat Scand 2015; 131 (03) 185-96.
  • 22 Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM. et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiat 2007; 64 (06) 633-47.
  • 23 Désaméricq G, Schurhoff F, Meary A, Szöke A, Macquin-Mavier I, Bachoud-Lévi A. et al. Longterm neurocognitive effects of antipsychotics in schizophrenia: a network meta-analysis. European journal of clinical pharmacology 2014; 70 (02) 127-34.
  • 24 Yang YS, Marder SR, Green MF. Repurposing drugs for cognition in schizophrenia. Clin Pharmacol Ther 2017; 101 (02) 191-3.
  • 25 Goff DC, Hill M, Barch D. The treatment of cognitive impairment in schizophrenia. Pharmacology Biochemistry and Behavior 2011; 99 (02) 245-53.
  • 26 Medalia A, Saperstein AM. Does cognitive remediation for schizophrenia improve functional outcomes?. Curr Opin Psychiatr 2013; 26 (02) 151-7.
  • 27 Twamley EW. Compensatory cognitive training for patients with psychosis. Schizophr Res 2010; 117 (2-3): 142-3.
  • 28 Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: Methodology and effect sizes. Am J Psychiat 2011; 168 (05) 472-85.
  • 29 McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT. A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiat 2007; 164 (12) 1791-802.
  • 30 Thorsen AL, Johansson K, Løberg E-M. Neurobiology of cognitive remediation therapy for schizophrenia: a systematic review. Frontiers in Psychiatry 2014; 5.
  • 31 Strassnig MT, Raykov T, O’Gorman C, Bowie CR, Sabbag S, Durand D. et al. Determinants of different aspects of everyday outcome in schizophrenia: the roles of negative symptoms, cognition, and functional capacity. Schizophr Res 2015; 165 (01) 76-82.
  • 32 Cella M, Preti A, Edwards C, Dow T, Wykes T. Cognitive remediation for negative symptoms of schizophrenia: A network meta-analysis. Clinical psychology review 2017; 52: 43-51.
  • 33 Jamil A, Nitsche MA. What Effect Does tDCS Have on the Brain? Basic Physiology of tDCS. Current Behavioral Neuroscience Reports 2017; 04 (04) 331-40.
  • 34 Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 2007; 72 4-6 208-14.
  • 35 Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychoph 2011; 14 (08) 1133-45.
  • 36 Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS. et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 2005; 568 Pt 1 291-303.
  • 37 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527 (03) 633-9.
  • 38 Brunoni AR, Vanderhasselt MA. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cognition 2014; 86: 1-9.
  • 39 Hill AT, Fitzgerald PB, Hoy KE. Effects of Anodal Transcranial direct current stimulation on working memory: A systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul 2016; 09 (02) 197-208.
  • 40 Brunoni AR, Vanderhasselt M-A. Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cognition 2014; 86: 1-9.
  • 41 Ruf SP, Fallgatter AJ, Plewnia C. Augmentation of working memory training by transcranial direct current stimulation (tDCS). Sci Rep-Uk 2017; 7.
  • 42 Au J, Katz B, Buschkuehl M, Bunarjo K, Senger T, Zabel C. et al. Enhancing working memory training with transcranial direct current stimulation. J Cogn Neurosci 2016; 28 (09) 1419-32.
  • 43 Katz B, Au J, Buschkuehl M, Abagis T, Zabel C, Jaeggi SM. et al. Individual differences and longterm consequences of tDCS-augmented cognitive training. J Cogn Neurosci 2017; 1-11.
  • 44 Pillet B, Morvan Y, Todd A, Franck N, Duboc C, Grosz A. et al. Cognitive remediation therapy (CRT) benefits more to patients with schizophrenia with low initial memory performances. Disabil Rehabil 2015; 37 (10) 846-53.
  • 45 Tseng P, Hsu TY, Chang CF, Tzeng OJL, Hung DL, Muggleton NG. et al. Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J Neurosci 2012; 32 (31) 10554-61.
  • 46 Manoach DS. Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Biol Psychiat 2002; 51 (08) 104s-s.
  • 47 Orlov ND, Tracy DK, Joyce D, Patel S, RodzinkaPasko J, Dolan H. et al. Stimulating cognition in schizophrenia: A controlled pilot study of the effects of prefrontal transcranial direct current stimulation upon memory and learning. Brain Stimul. 2016
  • 48 Hoy KE, Arnold SL, Emonson MRL, Daskalakis ZJ, Fitzgerald PB. An investigation into the effects of tDCS dose on cognitive performance over time in patients with schizophrenia. Schizophr Res 2014; 155 (1-3): 96-100.
  • 49 Vercammen A, Rushby JA, Loo C, Short B, Weickert CS, Weickert T. Transcranial direct current stimulation (Tdcs) influences probabilistic association learning in people with schizophrenia. Schizophrenia Bull 2011; 37: 231-2.
  • 50 Padinjareveettil AMT, Rogers J, Loo C, Martin D. Transcranial direct current stimulation to enhance cognitive remediation in schizophrenia. Brain Stimul 2015; 08 (02) 307-9.
  • 51 Nienow TM, Lim KO, MacDonald AW. TDCS produces incremental gain when combined with working memory training in patients with schizophrenia: A proof of concept pilot study. Schizophr Res 2016; 172 (1-3): 218-9.