Thromb Haemost 2019; 119(03): 407-420
DOI: 10.1055/s-0039-1677875
Cellular Haemostasis and Platelets
Georg Thieme Verlag KG Stuttgart · New York

Role of Platelet Size Revisited—Function and Protein Composition of Large and Small Platelets

Stefan Handtke
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Leif Steil
2   Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung Funktionelle Genomforschung, Universitätsmedizin Greifswald, Greifswald, Germany
,
Raghavendra Palankar
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Jane Conrad
2   Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung Funktionelle Genomforschung, Universitätsmedizin Greifswald, Greifswald, Germany
,
Simran Cauhan
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Luise Kraus
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Myriam Ferrara
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Vishnu Dhople
2   Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung Funktionelle Genomforschung, Universitätsmedizin Greifswald, Greifswald, Germany
,
Jan Wesche
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Uwe Völker
2   Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Abteilung Funktionelle Genomforschung, Universitätsmedizin Greifswald, Greifswald, Germany
,
Andreas Greinacher
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Thomas Thiele
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
› Author Affiliations
Funding This work was supported by the Deutsche Forschungsgesellschaft (DFG-SFB TRR 240, A06 to RP and A11 to AG) and Forschungsverbund für Molekulare Medizin, Universitätsmedizin Greifswald.
Further Information

Publication History

07 June 2018

10 December 2018

Publication Date:
06 February 2019 (online)

Abstract

Epidemiological studies found an association between increased platelet size and the risk for thrombotic complications, but functional differences of large and small platelets remain poorly understood due to a lack of standardized protocols separating platelets with different size. We designed a protocol to separate large and small platelets from 15 mL whole blood. Separated large and small platelet fractions differed in mean platelet volume: 12.1 fl (10.3–13.8 fl) versus 7.7 fl (6.8–9.5 fl, p < 0.01), and forward scatter mean fluorescence intensity: 24.75 (19.9–30.9) versus 16.85 (11.3–20.6; p < 0.01). Similar fold differences were observed in cell diameter and plateletcrit. Large platelets express 30 to 50% more glycoprotein (GP) Ia, GPIb, GPIIIa, GPVI and P2Y12 on their membranes compared with small ones. Single large platelets covered a 50% larger area on a collagen surface. Adhesion to collagen was faster in large platelets compared with small ones indicating enhanced outside-in signal transduction in large platelets via collagen receptors. In contrast, integrin activation was more pronounced in small platelets after ADP stimulation. Proteome analysis revealed that 80 of the 894 proteins quantified differed in abundance: ADP-ribosylation factor 1/3, guanosine triphosphate-binding protein SAR1a, Voltage-dependent anion-selective channel protein 3 and guanylate cyclase soluble sub-unit α-3 were higher abundant in large, whereas immunoglobulins, haptoglobin, hemopexin, α-1-antitrypsin, serotransferrin and vitronectin were more abundant in small platelets. We conclude that some functions and the protein composition of large and small platelets differ, which cannot only be explained by the size difference. Our data suggest different functional roles of large and small platelets.

Authors' Contributions

S.H., L.S., T.T. and A.G. designed the experiments; S.H., L.S., R.P., J.C., S.C., L.K., M.F., V.D. and J.W. performed the experiments; S.H., L.S., R.P. and T.T. analysed the data; and S.H., L.S., U.V., A.G. and T.T. wrote the manuscript.


Supplementary Material

 
  • References

  • 1 Mancuso ME, Santagostino E. Platelets: much more than bricks in a breached wall. Br J Haematol 2017; 178 (02) 209-219
  • 2 Sut C, Tariket S, Aubron C. , et al. The non-hemostatic aspects of transfused platelets. Front Med (Lausanne) 2018; 5: 42
  • 3 Munnix IC, Cosemans JM, Auger JM, Heemskerk JW. Platelet response heterogeneity in thrombus formation. Thromb Haemost 2009; 102 (06) 1149-1156
  • 4 McDonald TP, Odell Jr TT, Gosslee DG. Platelet size in relation to platelet age. Proc Soc Exp Biol Med 1964; 115: 684-689
  • 5 Handtke S, Steil L, Greinacher A, Thiele T. Toward the relevance of platelet subpopulations for transfusion medicine. Front Med (Lausanne) 2018; 5: 17
  • 6 Clancy L, Beaulieu LM, Tanriverdi K, Freedman JE. The role of RNA uptake in platelet heterogeneity. Thromb Haemost 2017; 117 (05) 948-961
  • 7 Chu SG, Becker RC, Berger PB. , et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 2010; 8 (01) 148-156
  • 8 Sansanayudh N, Numthavaj P, Muntham D. , et al. Prognostic effect of mean platelet volume in patients with coronary artery disease. A systematic review and meta-analysis. Thromb Haemost 2015; 114 (06) 1299-1309
  • 9 Lood C, Tydén H, Gullstrand B. , et al. Decreased platelet size is associated with platelet activation and anti-phospholipid syndrome in systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56 (03) 408-416
  • 10 Frojmovic M, Wong T. Dynamic measurements of the platelet membrane glycoprotein IIb-IIIa receptor for fibrinogen by flow cytometry. II. Platelet size-dependent subpopulations. Biophys J 1991; 59 (04) 828-837
  • 11 Palankar R, Binsker U, Haracska B, Wesche J, Greinacher A, Hammerschmidt S. Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets. Int J Med Microbiol 2018; 308 (06) 683-691
  • 12 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • 13 Thiele T, Braune J, Dhople V. , et al. Proteomic profile of platelets during reconstitution of platelet counts after apheresis. Proteomics Clin Appl 2016; 10 (08) 831-838
  • 14 Allen M, Poggiali D, Whitaker K. , et al. Raincloud plots: a multi-platform tool for robust data visualization. PeerJ Preprints 2018: 6
  • 15 Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26 (12) 1367-1372
  • 16 Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 2014; 13 (09) 2513-2526
  • 17 Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J. Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 2015; 15 (08) 1453-1456
  • 18 Burkhart JM, Vaudel M, Gambaryan S. , et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120 (15) e73-e82
  • 19 Machin SJ, Briggs C. Mean platelet volume: a quick, easy determinant of thrombotic risk?. J Thromb Haemost 2010; 8 (01) 146-147
  • 20 Briggs C, Harrison P, Machin SJ. Continuing developments with the automated platelet count. Int J Lab Hematol 2007; 29 (02) 77-91
  • 21 Thompson CB, Jakubowski JA, Quinn PG, Deykin D, Valeri CR. Platelet size as a determinant of platelet function. J Lab Clin Med 1983; 101 (02) 205-213
  • 22 Karpatkin S. Heterogeneity of human platelets. II. Functional evidence suggestive of young and old platelets. J Clin Invest 1969; 48 (06) 1083-1087
  • 23 Karpatkin S. Heterogeneity of human platelets. VI. Correlation of platelet function with platelet volume. Blood 1978; 51 (02) 307-316
  • 24 Gul M, Uyarel H, Akgul O. , et al. Long-term prognostic significance of admission plateletcrit values in patients with non-ST elevation myocardial infarction. Blood Coagul Fibrinolysis 2016; 27 (06) 696-701
  • 25 Azab B, Torbey E, Singh J. , et al. Mean platelet volume/platelet count ratio as a predictor of long-term mortality after non-ST-elevation myocardial infarction. Platelets 2011; 22 (08) 557-566
  • 26 Polanowska-Grabowska R, Raha S, Gear AR. Adhesion efficiency, platelet density and size. Br J Haematol 1992; 82 (04) 715-720
  • 27 Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 2001; 86 (01) 178-188
  • 28 Shome K, Nie Y, Romero G. ADP-ribosylation factor proteins mediate agonist-induced activation of phospholipase D. J Biol Chem 1998; 273 (46) 30836-30841
  • 29 Kessler T, Wobst J, Wolf B. , et al. Functional characterization of the GUCY1A3 coronary artery disease risk locus. Circulation 2017; 136 (05) 476-489
  • 30 Loughney K, Hill TR, Florio VA. , et al. Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene 1998; 216 (01) 139-147
  • 31 Smolenski A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J Thromb Haemost 2012; 10 (02) 167-176
  • 32 Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011; 91 (01) 151-175
  • 33 Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 2015; 6: 187
  • 34 Branchford BR, Ramos C, Jones W. , et al. Human apolipoprotein a-I decreases platelet activation responses and protects mice from arterial thrombosis. Blood 2014; 124 (21) 4159
  • 35 Jones WL, Moore EE, Harr JN. , et al. Apolipoprotein A-I inhibits clot formation by inhibition of platelets. J Am Coll Surg 2012; 215 (03) S132-S133
  • 36 Freynhofer MK, Gruber SC, Grove EL, Weiss TW, Wojta J, Huber K. Antiplatelet drugs in patients with enhanced platelet turnover: biomarkers versus platelet function testing. Thromb Haemost 2015; 114 (03) 459-468
  • 37 Freynhofer MK, Iliev L, Bruno V. , et al. Platelet turnover predicts outcome after coronary intervention. Thromb Haemost 2017; 117 (05) 923-933