Thromb Haemost 2019; 119(04): 618-632
DOI: 10.1055/s-0039-1678663
Coagulation and Fibrinolysis
Georg Thieme Verlag KG Stuttgart · New York

Converting the Distinct Heparins Sourced from Bovine or Porcine Mucosa into a Single Anticoagulant Drug

Ana M. F. Tovar*
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Bruno C. Vairo*
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Stephan-Nicollas M. C. G. Oliveira
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Bianca F. Glauser
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Gustavo R. C. Santos
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Nina V. Capillé
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Adriana A. Piquet
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Paloma S. Santana
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Kayene V. A. Micheli
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Mariana S. Pereira
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
E. Vilanova
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
,
Paulo A. S. Mourão
1   Institute of Medical Biochemistry Leopoldo de Meis, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
› Author Affiliations
Funding This work was supported by grants from Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).
Further Information

Publication History

10 September 2018

21 December 2018

Publication Date:
21 February 2019 (online)

Abstract

Unfractionated heparin (UFH) and their low-molecular-weight derivatives are sourced almost exclusively from porcine mucosa (HPI); however, a worldwide introduction of UFH from bovine mucosa (HBI) has been recommended to reinforce the currently unsteady supply chain of heparin products. Although HBI has different chemical composition and about half of the anticoagulant potency of HPI (∼100 and ∼180 international unit [IU]/mg, respectively), they have been employed as interchangeable UFHs in some countries since the 1990s. However, their use as a single drug provoked several bleeding incidents in Brazil, which precipitated the publication of the first monographs exclusive for HBI and HPI by the Brazilian Pharmacopoeia. Nevertheless, we succeed in producing with high-resolution anion-exchange chromatography a novel HBI derivative with anticoagulant potency (200 IU/mg), disaccharide composition (enriched in N,6-disulfated α-glucosamine) and safety profile (bleeding and heparin-induced thrombocytopaenia potentials and protamine neutralization) similar to those seen in the gold standard HPI. Therefore, we show that it is possible to equalize the composition and pharmacological characteristics of these distinct UFHs by employing an easily implementable improvement in the HBI manufacturing.

* These authors have contributed equally as first authors.


Supplementary Material

 
  • References

  • 1 Barrowcliffe TW. History of heparin. Handb Exp Pharmacol 2012; 207 (207) 3-22
  • 2 Gunaratne R, Kumar S, Frederiksen JW. , et al. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nat Biotechnol 2018; 36 (07) 606-613
  • 3 Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of heparin and related drugs. Pharmacol Rev 2016; 68 (01) 76-141
  • 4 van der Meer JY, Kellenbach E, van den Bos LJ. From farm to pharma: an overview of industrial heparin manufacturing methods. Molecules 2017; 22 (06) E1025
  • 5 Gomes WJ, Leal JC, Braile DM. , et al. A Brazilian perspective for the use of bovine heparin in open heart surgery. Int J Cardiol 2016; 223: 611-612
  • 6 Eriksson A, Burcharth J, Rosenberg J. Animal derived products may conflict with religious patients' beliefs. BMC Med Ethics 2013; 14: 48
  • 7 Tovar AMF, Teixeira LA, Rembold SM, Leite Jr M, Lugon JR, Mourão PA. Bovine and porcine heparins: different drugs with similar effects on human haemodialysis. BMC Res Notes 2013; 6: 230
  • 8 Bertini S, Risi G, Guerrini M, Carrick K, Szajek AY, Mulloy B. Molecular weights of bovine and porcine heparin samples: comparison of chromatographic methods and results of a collaborative survey. Molecules 2017; 22 (07) E1214
  • 9 St Ange K, Onishi A, Fu L. , et al. Analysis of heparins derived from bovine tissues and comparison to porcine intestinal heparins. Clin Appl Thromb Hemost 2016; 22 (06) 520-527
  • 10 Monakhova YB, Diehl BWK, Fareed J. Authentication of animal origin of heparin and low molecular weight heparin including ovine, porcine and bovine species using 1D NMR spectroscopy and chemometric tools. J Pharm Biomed Anal 2018; 149: 114-119
  • 11 Aquino RS, Pereira MS, Vairo BC. , et al. Heparins from porcine and bovine intestinal mucosa: are they similar drugs?. Thromb Haemost 2010; 103 (05) 1005-1015
  • 12 Santos GRC, Tovar AMF, Capillé NVM, Pereira MS, Pomin VH, Mourão PAS. Structural and functional analyses of bovine and porcine intestinal heparins confirm they are different drugs. Drug Discov Today 2014; 19 (11) 1801-1807
  • 13 Tovar AMF, Capillé NV, Santos GR. , et al. Heparin from bovine intestinal mucosa: glycans with multiple sulfation patterns and anticoagulant effects. Thromb Haemost 2012; 107 (05) 903-915
  • 14 Tovar AMF, Santos GR, Capillé NV. , et al. Structural and haemostatic features of pharmaceutical heparins from different animal sources: challenges to define thresholds separating distinct drugs. Sci Rep 2016; 6: 35619
  • 15 Huntington JA. Thrombin inhibition by the serpins. J Thromb Haemost 2013; 11 (Suppl. 01) 254-264
  • 16 Keire D, Mulloy B, Chase C. , et al. Diversifying the global heparin supply chain. Reintroduction of bovine heparin in the United States?. Pharm Technol 2015; 39: 28-35
  • 17 U.S. Pharmacopoeia-National Formulary. Heparin sodium monograph: USP41–NF36. USP Convention, Rockville; 2018
  • 18 European Pharmacopoeia. Heparin sodium monograph: EP 9th ed. Strasbourg: EDQM Commission; 2018
  • 19 Brazilian Pharmacopoeia. Bovine Heparin Sodium Monograph: Brazilian Pharmacopeia. 5th ed., 2nd suppl. Brasilia: ANVISA; 2017
  • 20 Brazilian Pharmacopoeia. Porcine Heparin Sodium Monograph: Brazilian Pharmacopeia. 5th ed., 1st suppl. Brasilia: ANVISA; 2016
  • 21 Andrade JPS, Oliveira CP, Tovar AMF, Mourão PAS, Vilanova E. A color-code for glycosaminoglycans identification by means of polyacrylamide gel electrophoresis stained with the cationic carbocyanine dye Stains-all. Electrophoresis 2018; 39 (04) 666-669
  • 22 Thiangthum S, Vander Heyden Y, Buchberger W, Viaene J, Prutthiwanasan B, Suntornsuk L. Development and validation of an ion-exchange chromatography method for heparin and its impurities in heparin products. J Sep Sci 2014; 37 (22) 3195-3204
  • 23 Mauri L, Boccardi G, Torri G. , et al. Qualification of HSQC methods for quantitative composition of heparin and low molecular weight heparins. J Pharm Biomed Anal 2017; 136: 92-105
  • 24 Olson ST, Björk I, Shore JD. Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol 1993; 222: 525-559
  • 25 Fay WP. Intravital fluorescence microscopy improves thrombosis phenotype scoring in mice. Arterioscler Thromb Vasc Biol 2011; 31 (06) 1253-1254
  • 26 Krauel K, Hackbarth C, Fürll B, Greinacher A. Heparin-induced thrombocytopenia: in vitro studies on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and anti-PF4/heparin antibodies. Blood 2012; 119 (05) 1248-1255
  • 27 Glauser BF, Santos GRC, Silva JD. , et al. Chemical and pharmacological aspects of neutralization of heparins from different animal sources by protamine. J Thromb Haemost 2018; 16 (09) 1789-1799
  • 28 Hogwood J, Mulloy B, Gray E. Precipitation and neutralization of heparin from different sources by protamine sulfate. Pharmaceuticals (Basel) 2017; 10 (03) E59
  • 29 Zhang Z, Li B, Suwan J. , et al. Analysis of pharmaceutical heparins and potential contaminants using (1)H-NMR and PAGE. J Pharm Sci 2009; 98 (11) 4017-4026
  • 30 Naggi A, Gardini C, Pedrinola G. , et al. Structural peculiarity and antithrombin binding region profile of mucosal bovine and porcine heparins. J Pharm Biomed Anal 2016; 118: 52-63
  • 31 Fu L, Li K, Mori D. , et al. Enzymatic generation of highly anticoagulant bovine intestinal heparin. J Med Chem 2017; 60 (20) 8673-8679
  • 32 Jeske W, Walenga JM, Hoppensteadt D, Fareed J. Update on the safety and bioequivalence of biosimilars - focus on enoxaparin. Drug Healthc Patient Saf 2013; 5: 133-141
  • 33 Vilanova E, Glauser BF, Oliveira SM, Tovar AMF, Mourão PAS. Update on Brazilian biosimilar enoxaparins. Expert Rev Hematol 2016; 9 (11) 1015-1021
  • 34 Borsig L. Antimetastatic activities of modified heparins: selectin inhibition by heparin attenuates metastasis. Semin Thromb Hemost 2007; 33 (05) 540-546
  • 35 Cassinelli G, Naggi A. Old and new applications of non-anticoagulant heparin. Int J Cardiol 2016; 212 (Suppl. 01) S14-S21
  • 36 Veraldi N, Hughes AJ, Rudd TR. , et al. Heparin derivatives for the targeting of multiple activities in the inflammatory response. Carbohydr Polym 2015; 117: 400-407
  • 37 Bolliger D, Tanaka KA. Point-of-care coagulation testing in cardiac surgery. Semin Thromb Hemost 2017; 43 (04) 386-396
  • 38 Gomes WJ, Braile DM. The troubled heparin issue in the Brazilian market and the search for solutions. Rev Bras Cir Cardiovasc 2009; 24 (02) 3-4
  • 39 Junqueira DR, Viana TG, Peixoto ER, Barros FC, Carvalho Md, Perini E. Heparin pharmacovigilance in Brazil. Rev Assoc Med Bras (1992) 2011; 57 (03) 322-326
  • 40 Mittermayr M, Velik-Salchner C, Stalzer B. , et al. Detection of protamine and heparin after termination of cardiopulmonary bypass by thrombelastometry (ROTEM): results of a pilot study. Anesth Analg 2009; 108 (03) 743-750
  • 41 Francis JL, Palmer III GJ, Moroose R, Drexler A. Comparison of bovine and porcine heparin in heparin antibody formation after cardiac surgery. Ann Thorac Surg 2003; 75 (01) 17-22
  • 42 Ansell JE, Price JM, Shah S, Beckner RR. Heparin-induced thrombocytopenia. What is its real frequency?. Chest 1985; 88 (06) 878-882
  • 43 Bertini S, Fareed J, Madaschi L, Risi G, Torri G, Naggi A. Characterization of PF4-heparin complexes by photon correlation spectroscopy and zeta potential. Clin Appl Thromb Hemost 2017; 23 (07) 725-734
  • 44 Nicolaides AN, Fareed J, Kakkar AK. , et al. Prevention and treatment of venous thromboembolism--International Consensus Statement. Int Angiol 2013; 32 (02) 111-260
  • 45 Ingle RG, Agarwal AS. A world of low molecular weight heparins (LMWHs) enoxaparin as a promising moiety--a review. Carbohydr Polym 2014; 106: 148-153
  • 46 Global Heparin Market Will Reach USD 10,929.51 Million by 2023: Zion Market Research. Available at: https://globenewswire.com/news-release/2018/03/16/1438456/0/en/Global-Hparin-Market-Will-Reach-USD-10-929-51-Million-by-2023-Zion-Market-Research.html. Accessed October 5, 2018
  • 47 Vilanova E, Tovar AMF, Mourão PAS. Imminent risk of a global shortage of heparin caused by the African Swine Fever afflicting the Chinese pig herd. J Thromb Haemost 2018. Doi: 10.1111/jth.14372
  • 48 McMahon AW. et al. Description of hypersensitivity adverse events following administration of heparin that was potentially contaminated with oversulfated chondroitin sulfate in early 2008. Pharmacoepidemiol Drug Saf 2010; 19: 921-933
  • 49 Fareed J, Hoppensteadt D, Schultz C. , et al. Biochemical and pharmacologic heterogeneity in low molecular weight heparins. Impact on the therapeutic profile. Curr Pharm Des 2004; 10 (09) 983-999
  • 50 Liu X, St Ange K, Fareed J. , et al. Comparison of low-molecular-weight heparins prepared from bovine heparins with enoxaparin. Clin Appl Thromb Hemost 2017; 23 (06) 542-553