Semin Thromb Hemost 2019; 45(04): 373-384
DOI: 10.1055/s-0039-1687891
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Oncogenes and Clotting Factors: The Emerging Role of Tumor Cell Genome and Epigenome in Cancer-Associated Thrombosis

Nadim Tawil
1   Montreal Children's Hospital, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
,
Rayhaan Bassawon
1   Montreal Children's Hospital, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
,
Janusz Rak
1   Montreal Children's Hospital, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
› Author Affiliations
Funding This work was supported by the operating grants from the Canadian Institutes for Health Research (CIHR Foundation grants MOP 102736, MOP 111119) and the Canadian Cancer Society Innovation to Impact to J. R., who is also a recipient of the Jack Cole Chair in Pediatric Hematology/Oncology. N. T. was supported by the McGill Integrated Cancer Research Training Program. Infrastructure funds were provided by the Fonds de Recherche en Santé du Quebec.
Further Information

Publication History

Publication Date:
16 May 2019 (online)

Abstract

There are emerging linkages between biological and genetic aspects of cancer progression and the mechanisms of cancer-associated thrombosis. It is argued that reciprocal influences between cancer cells, their associated vascular stroma, and the hemostatic system may shape the mechanism of coagulopathy. In this regard, glioblastoma multiforme offers a paradigm where the prevalent occurrence of local microthrombosis and peripheral venous thromboembolism can be linked to the profiles of oncogenic driver mutations and their impact on the expression of coagulation-related genes (coagulome). These relationships can be recapitulated in cellular models of glioblastoma, where the expression of tissue factor, podoplanin, and the release of procoagulant microparticles (extracellular vesicles) remains under the control of oncogenic pathways (epidermal growth factor receptor variant III, isocitrate dehydrogenase 1). These pathways define molecular subtypes of glioblastoma that express differential coagulomes. Moreover, single-cell sequencing of glioblastoma samples reveals a combinatorial rather than common profile of both subtype markers and coagulation-related genes. Based on these emerging observations, the authors suggest that cancers may operate as coagulant composites, where individual cells and their dominant populations express different procoagulant phenotypes, resulting in the net impact on the hemostatic system. They suggest that relating these mechanisms to clinical presentations of thrombosis may facilitate a more causality-based, personalized, and possibly cancer-specific thromboprophylaxis and treatment.

 
  • References

  • 1 Trousseau A. Phlegmasia Alba Dolens. 2nd ed. Paris, France: Baillière; 1865: 654-712
  • 2 Rickles FR, Falanga A. Activation of clotting factors in cancer. Cancer Treat Res 2009; 148: 31-41
  • 3 Falanga A, Russo L, Milesi V, Vignoli A. Mechanisms and risk factors of thrombosis in cancer. Crit Rev Oncol Hematol 2017; 118: 79-83
  • 4 Hisada Y, Mackman N. Mouse models of cancer-associated thrombosis. Thromb Res 2018; 164 (Suppl. 01) S48-S53
  • 5 Wun T, White RH. Epidemiology of cancer-related venous thromboembolism. Best Pract Res Clin Haematol 2009; 22 (01) 9-23
  • 6 Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007; 5 (03) 632-634
  • 7 Kahale LA, Tsolakian IG, Hakoum MB. , et al. Anticoagulation for people with cancer and central venous catheters. Cochrane Database Syst Rev 2018; 6: CD006468
  • 8 D'Asti E, Rak J. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy. Thromb Res 2016; 140 (Suppl. 01) S37-S43
  • 9 Geddings JE, Mackman N. New players in haemostasis and thrombosis. Thromb Haemost 2014; 111 (04) 570-574
  • 10 Kuderer NM, Lyman GH. Guidelines for treatment and prevention of venous thromboembolism among patients with cancer. Thromb Res 2014; 133 (Suppl. 02) S122-S127
  • 11 Navi BB, Reiner AS, Kamel H. , et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol 2017; 70 (08) 926-938
  • 12 Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005; 293 (06) 715-722
  • 13 Ouaissi M, Frasconi C, Mege D. , et al. Impact of venous thromboembolism on the natural history of pancreatic adenocarcinoma. Hepatobiliary Pancreat Dis Int 2015; 14 (04) 436-442
  • 14 Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood 2013; 122 (10) 1712-1723
  • 15 Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 2018; 16 (10) 1941-1952
  • 16 Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell 2018; 33 (06) 965-983
  • 17 Massberg S, Grahl L, von Bruehl ML. , et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 18 Palumbo JS, Degen JL. Mechanisms coupling the hemostatic system to colitis-associated cancer. Thromb Res 2010; 125 (Suppl. 02) S39-S43
  • 19 van den Berg YW, Osanto S, Reitsma PH, Versteeg HH. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 2012; 119 (04) 924-932
  • 20 Degen JL, Palumbo JS. Hemostatic factors, innate immunity and malignancy. Thromb Res 2012; 129 (Suppl. 01) S1-S5
  • 21 Morrow JJ, Bayles I, Funnell APW. , et al. Positively selected enhancer elements endow osteosarcoma cells with metastatic competence. Nat Med 2018; 24 (02) 176-185
  • 22 Schwalie PC, Dong H, Zachara M. , et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 2018; 559 (7712): 103-108
  • 23 Ruf W. Redundant signaling of tissue factor and thrombin in cancer progression?. J Thromb Haemost 2007; 5 (08) 1584-1587
  • 24 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3 (08) 1800-1814
  • 25 Hugo de Almeida V, Guimarães IDS, Almendra LR. , et al. Positive crosstalk between EGFR and the TF-PAR2 pathway mediates resistance to cisplatin and poor survival in cervical cancer. Oncotarget 2018; 9 (55) 30594-30609
  • 26 Lee AY, Peterson EA. Treatment of cancer-associated thrombosis. Blood 2013; 122 (14) 2310-2317
  • 27 Griffiths GO, Burns S, Noble SI, Macbeth FR, Cohen D, Maughan TS. FRAGMATIC: a randomised phase III clinical trial investigating the effect of fragmin added to standard therapy in patients with lung cancer. BMC Cancer 2009; 9: 355-359
  • 28 Grover SP, Mackman N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol 2018; 38 (04) 709-725
  • 29 Adams RL, Bird RJ. Review article: coagulation cascade and therapeutics update: relevance to nephrology. Part 1: overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton) 2009; 14 (05) 462-470
  • 30 Aharon A, Brenner B. Microparticles, thrombosis and cancer. Best Pract Res Clin Haematol 2009; 22 (01) 61-69
  • 31 Lacroix R, Dubois C, Leroyer AS, Sabatier F, Dignat-George F. Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost 2013; 11 (Suppl. 01) 24-35
  • 32 Mackman N. Triggers, targets and treatments for thrombosis. Nature 2008; 451 (7181): 914-918
  • 33 Stark K, Schubert I, Joshi U. , et al. Distinct pathogenesis of pancreatic cancer microvesicle-associated venous thrombosis identifies new antithrombotic targets in vivo. Arterioscler Thromb Vasc Biol 2018; 38 (04) 772-786
  • 34 Davies NA, Harrison NK, Morris RH. , et al. Fractal dimension (df) as a new structural biomarker of clot microstructure in different stages of lung cancer. Thromb Haemost 2015; 114 (06) 1251-1259
  • 35 Rak J, Klement G. Impact of oncogenes and tumor suppressor genes on deregulation of hemostasis and angiogenesis in cancer. Cancer Metastasis Rev 2000; 19 (1-2): 93-96
  • 36 D'Asti E, Fang Y, Rak J. Brain neoplasms and coagulation-lessons from heterogeneity. Rambam Maimonides Med J 2014; 5 (04) e0030
  • 37 Perry JR. Thromboembolic disease in patients with high-grade glioma. Neuro-oncol 2012; 14 (Suppl. 04) iv73-iv80
  • 38 Tabori U, Beni-Adani L, Dvir R. , et al. Risk of venous thromboembolism in pediatric patients with brain tumors. Pediatr Blood Cancer 2004; 43 (06) 633-636
  • 39 D'Asti E, Magnus N, Meehan B, Garnier D, Rak J. Genetic basis of thrombosis in cancer. Semin Thromb Hemost 2014; 40 (03) 284-295
  • 40 Tawil N, Chennakrishnaiah S, Bassawon R, Johnson R, D'Asti E, Rak J. Single cell coagulomes as constituents of the oncogene-driven coagulant phenotype in brain tumours. Thromb Res 2018; 164 (Suppl. 01) S136-S142
  • 41 Riedl J, Preusser M, Nazari PM. , et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 2017; 129 (13) 1831-1839
  • 42 Hisada Y, Mackman N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017; 130 (13) 1499-1506
  • 43 Contrino J, Hair G, Kreutzer DL, Rickles FR. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease. Nat Med 1996; 2 (02) 209-215
  • 44 Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10 (08) 789-799
  • 45 Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265 (5178): 1582-1584
  • 46 Rak J, Mitsuhashi Y, Bayko L. , et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55 (20) 4575-4580
  • 47 Rak J, Yu JL, Klement G, Kerbel RS. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 2000; 5 (01) 24-33
  • 48 Volpert OV, Dameron KM, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 1997; 14 (12) 1495-1502
  • 49 Tape CJ, Ling S, Dimitriadi M. , et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 2016; 165 (04) 910-920
  • 50 Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6 (05) 447-458
  • 51 Ancrile B, Lim KH, Counter CM. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 2007; 21 (14) 1714-1719
  • 52 Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 2018; 18 (03) 139-147
  • 53 Yu JL, May L, Lhotak V. , et al. Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 2005; 105 (04) 1734-1741
  • 54 Rong Y, Post DE, Pieper RO, Durden DL, Van Meir EG, Brat DJ. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 2005; 65 (04) 1406-1413
  • 55 Boccaccio C, Sabatino G, Medico E. , et al. The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 2005; 434 (7031): 396-400
  • 56 Unruh D, Schwarze SR, Khoury L. , et al. Mutant IDH1 and thrombosis in gliomas. Acta Neuropathol 2016; 132 (06) 917-930
  • 57 Viloria-Petit AM, Rak J, Hung MC. , et al. Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151: 1523-1530
  • 58 Harris AL. Anti-angiogenesis therapy and strategies for integrating it with adjuvant therapy. Recent Results Cancer Res 1998; 152: 341-352
  • 59 Bouvet M, Ellis LM, Nishizaki M. , et al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 1998; 58 (11) 2288-2292
  • 60 Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 2016; 16 (09) 582-598
  • 61 Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315 (26) 1650-1659
  • 62 Al-Nedawi K, Meehan B, Micallef J. , et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10 (05) 619-624
  • 63 Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics 2018; 17 (10) 1948-1964
  • 64 Garnier D, Magnus N, Lee TH. , et al. Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem 2012; 287 (52) 43565-43572
  • 65 Chennakrishnaiah S, Meehan B, D'Asti E. , et al. Leukocytes as a reservoir of circulating oncogenic DNA and regulatory targets of tumor-derived extracellular vesicles. J Thromb Haemost 2018; 16 (09) 1800-1813
  • 66 Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 2006; 66 (22) 10643-10646
  • 67 Ünlü B, van Es N, Arindrarto W. , et al. Genes associated with venous thromboembolism in colorectal cancer patients. J Thromb Haemost 2018; 16 (02) 293-302
  • 68 Provençal M, Labbé D, Veitch R. , et al. c-Met activation in medulloblastoma induces tissue factor expression and activity: effects on cell migration. Carcinogenesis 2009; 30 (07) 1089-1096
  • 69 Yu JL, Xing R, Milsom C, Rak J. Modulation of the oncogene-dependent tissue factor expression by kinase suppressor of ras 1. Thromb Res 2010; 126 (01) e6-e10
  • 70 Milsom CC, Yu JL, Mackman N. , et al. Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 2008; 68 (24) 10068-10076
  • 71 Ades S, Kumar S, Alam M. , et al. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer. J Thromb Haemost 2015; 13 (06) 998-1003
  • 72 Corrales-Rodriguez L, Soulières D, Weng X, Tehfe M, Florescu M, Blais N. Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study. Thromb Res 2014; 133 (01) 48-51
  • 73 Zer A, Moskovitz M, Hwang DM. , et al. ALK-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism. Clin Lung Cancer 2017; 18 (02) 156-161
  • 74 Lee YG, Kim I, Lee E. , et al. Risk factors and prognostic impact of venous thromboembolism in Asian patients with non-small cell lung cancer. Thromb Haemost 2014; 111 (06) 1112-1120
  • 75 Regina S, Valentin JB, Lachot S, Lemarié E, Rollin J, Gruel Y. Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin Chem 2009; 55 (10) 1834-1842
  • 76 Regina S, Rollin J, Bléchet C, Iochmann S, Reverdiau P, Gruel Y. Tissue factor expression in non-small cell lung cancer: relationship with vascular endothelial growth factor expression, microvascular density, and K-ras mutation. J Thorac Oncol 2008; 3 (07) 689-697
  • 77 Alexander M, Burbury K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer - Results, practical issues and proposed strategies for future risk prediction models. Thromb Res 2016; 148: 63-69
  • 78 Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 2017; 14 (07) 434-452
  • 79 Verhaak RG, Hoadley KA, Purdom E. , et al; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17 (01) 98-110
  • 80 Tehrani M, Friedman TM, Olson JJ, Brat DJ. Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol 2008; 18 (02) 164-171
  • 81 Magnus N, Gerges N, Jabado N, Rak J. Coagulation-related gene expression profile in glioblastoma is defined by molecular disease subtype. J Thromb Haemost 2013; 11 (06) 1197-1200
  • 82 Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359 (05) 492-507
  • 83 Sartori MT, Della Puppa A, Ballin A. , et al. Circulating microparticles of glial origin and tissue factor bearing in high-grade glioma: a potential prothrombotic role. Thromb Haemost 2013; 110 (02) 378-385
  • 84 Thaler J, Ay C, Mackman N. , et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10 (07) 1363-1370
  • 85 Takemoto A, Miyata K, Fujita N. Platelet-activating factor podoplanin: from discovery to drug development. Cancer Metastasis Rev 2017; 36 (02) 225-234
  • 86 Magnus N, Garnier D, Rak J. Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 2010; 116 (05) 815-818
  • 87 Magnus N, Garnier D, Meehan B. , et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci U S A 2014; 111 (09) 3544-3549
  • 88 Magnus N, Meehan B, Garnier D. , et al. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis. Biochem Biophys Res Commun 2014; 454 (02) 262-268
  • 89 Rong Y, Belozerov VE, Tucker-Burden C. , et al. Epidermal growth factor receptor and PTEN modulate tissue factor expression in glioblastoma through JunD/activator protein-1 transcriptional activity. Cancer Res 2009; 69 (06) 2540-2549
  • 90 Mir Seyed Nazari P, Riedl J, Preusser M. , et al. Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism. J Thromb Haemost 2018; 16 (06) 1121-1127
  • 91 Sturm D, Bender S, Jones DT. , et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14 (02) 92-107
  • 92 Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 2012; 8 (06) 340-351
  • 93 Gröbner SN, Worst BC, Weischenfeldt J. , et al; ICGC PedBrain-Seq Project; ICGC MMML-Seq Project. The landscape of genomic alterations across childhood cancers. Nature 2018; 555 (7696): 321-327
  • 94 Bajzar L, Chan AK, Massicotte MP, Mitchell LG. Thrombosis in children with malignancy. Curr Opin Pediatr 2006; 18 (01) 1-9
  • 95 Piovesan D, Attard C, Monagle P, Ignjatovic V. Epidemiology of venous thrombosis in children with cancer. Thromb Haemost 2014; 111 (06) 1015-1021
  • 96 D'Asti E, Kool M, Pfister SM, Rak J. Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. J Thromb Haemost 2014; 12 (11) 1838-1849
  • 97 Phoenix TN, Patmore DM, Boop S. , et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 2016; 29 (04) 508-522
  • 98 D'Asti E, Huang A, Kool M. , et al. Tissue factor regulation by miR-520g in primitive neuronal brain tumor cells: a possible link between oncomirs and the vascular tumor microenvironment. Am J Pathol 2016; 186 (02) 446-459
  • 99 D'Asti E, Anderson GM, Rak J. Inhibition of tissue factor signaling in breast tumour xenografts induces widespread changes in the microRNA expression profile. Biochem Biophys Res Commun 2017; 494 (3-4): 700-705
  • 100 Inda MM, Bonavia R, Mukasa A. , et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24 (16) 1731-1745
  • 101 Sottoriva A, Spiteri I, Piccirillo SG. , et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 2013; 110 (10) 4009-4014
  • 102 Singh SK, Hawkins C, Clarke ID. , et al. Identification of human brain tumour initiating cells. Nature 2004; 432 (7015): 396-401
  • 103 Garnier D, Meehan B, Kislinger T. , et al. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro-oncol 2018; 20 (02) 236-248
  • 104 Wang J, Cazzato E, Ladewig E. , et al. Clonal evolution of glioblastoma under therapy. Nat Genet 2016; 48 (07) 768-776
  • 105 Patel AP, Tirosh I, Trombetta JJ. , et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344 (6190): 1396-1401
  • 106 Suvà ML, Rheinbay E, Gillespie SM. , et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014; 157 (03) 580-594
  • 107 Filbin MG, Tirosh I, Hovestadt V. , et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 2018; 360 (6386): 331-335
  • 108 Phillips HS, Kharbanda S, Chen R. , et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9 (03) 157-173
  • 109 Johnson BE, Mazor T, Hong C. , et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014; 343 (6167): 189-193
  • 110 Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017; 31 (03) 326-341
  • 111 Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016; 36 (03) 301-312
  • 112 Lee TH, Chennakrishnaiah S, Audemard E, Montermini L, Meehan B, Rak J. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem Biophys Res Commun 2014; 451 (02) 295-301
  • 113 Phan VT, Wu X, Cheng JH. , et al. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proc Natl Acad Sci U S A 2013; 110 (15) 6079-6084
  • 114 Rak J. Extracellular vesicles - biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 2013; 4: 21
  • 115 Demers M, Krause DS, Schatzberg D. , et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A 2012; 109 (32) 13076-13081
  • 116 Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006; 10 (05) 355-362
  • 117 Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20 (05) 576-590
  • 118 Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017; 14 (09) 531-548
  • 119 Falanga A, Marchetti M. Hemostatic biomarkers in cancer progression. Thromb Res 2018; 164 (Suppl. 01) S54-S61
  • 120 Izumi H, Takahashi C, Oh J, Noda M. Tissue factor pathway inhibitor-2 suppresses the production of active matrix metalloproteinase-2 and is down-regulated in cells harboring activated ras oncogenes. FEBS Lett 2000; 481 (01) 31-36
  • 121 Mazzieri R, Furlan F, D'Alessio S. , et al. A direct link between expression of urokinase plasminogen activator receptor, growth rate and oncogenic transformation in mouse embryonic fibroblasts. Oncogene 2007; 26 (05) 725-732
  • 122 Zhao Y, Xiao A, Dipierro CG. , et al. H-Ras increases urokinase expression and cell invasion in genetically modified human astrocytes through Ras/Raf/MEK signaling pathway. Glia 2008; 56 (08) 917-924
  • 123 Jähner D, Hunter T. The stimulation of quiescent rat fibroblasts by v-src and v-fps oncogenic protein-tyrosine kinases leads to the induction of a subset of immediate early genes. Oncogene 1991; 6 (07) 1259-1268
  • 124 Milsom C, Rak J. Tissue factor and cancer. Pathophysiol Haemost Thromb 2008; 36 (3-4): 160-176
  • 125 Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2004; 2 (11) 2065-2067
  • 126 Yu JL, May L, Klement P, Weitz JI, Rak J. Oncogenes as regulators of tissue factor expression in cancer: implications for tumor angiogenesis and anti-cancer therapy. Semin Thromb Hemost 2004; 30 (01) 21-30
  • 127 Tallman MS, Lefèbvre P, Baine RM. , et al. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost 2004; 2 (08) 1341-1350
  • 128 Falanga A, Marchetti M, Vignoli A. , et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol 2007; 35 (05) 702-711
  • 129 Yu G, Li H, Wang X. , et al. MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion. Mol Cell Biochem 2013; 380 (1-2): 239-247
  • 130 Zhang X, Yu H, Lou JR. , et al. MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. J Biol Chem 2011; 286 (02) 1429-1435
  • 131 Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 2011; 71 (03) 645-654
  • 132 Chu HW, Cheng CW, Chou WC. , et al. A novel estrogen receptor-microRNA 190a-PAR-1-pathway regulates breast cancer progression, a finding initially suggested by genome-wide analysis of loci associated with lymph-node metastasis. Hum Mol Genet 2014; 23 (02) 355-367
  • 133 Villadsen SB, Bramsen JB, Ostenfeld MS. , et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br J Cancer 2012; 106 (02) 366-374
  • 134 Zhu ED, Li N, Li BS. , et al. miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS One 2014; 9 (08) e106049
  • 135 Botla SK, Savant S, Jandaghi P. , et al. Early epigenetic downregulation of microrna-192 expression promotes pancreatic cancer progression. Cancer Res 2016; 76 (14) 4149-4159
  • 136 Wu XL, Cheng B, Li PY. , et al. MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol 2013; 19 (43) 7758-7765