Semin Respir Crit Care Med 2020; 41(01): 003-012
DOI: 10.1055/s-0040-1701215
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Invasive Candidiasis

María F. Gonzalez-Lara
1   Clinical Microbiology Laboratory, Infectious Diseases Department, Instituto Nacional de Ciencias Médica y Nutrición Salvador Zubirán, Mexico City, Mexico
,
Luis Ostrosky-Zeichner
2   Division of Infectious Diseases, University of Texas Health Medical School, Houston, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
30 January 2020 (online)

Abstract

Invasive candidiasis (IC) is the most frequent health care associated invasive fungal infection. It is also associated with high morbidity, mortality, and cost. The most frequent etiologic agent is Candida albicans, but non-albicans species are increasing and associated with reduced antifungal susceptibility and outbreaks. Candida auris is an emerging multidrug-resistant species recently described. IC presents as a spectrum of disease, going from fungemia to deep-seated candidiasis, and to septic shock with multiorgan failure. Diagnosis of IC is challenging. Several biomarkers and molecular methods are available for improving diagnosis. Early initial treatment with echinocandins is the treatment of choice. Step-down therapy when antifungal susceptibility is available is possible. Several new antifungal agents for the treatment of IC are in clinical development.

Disclosures

Relevant to this topic, L.O. has received consulting, speaking, or research funding from the following companies: Astellas, Pfizer, Scynexis, Amplyx, Cidara, F2G, Gilead, RealTime, and Viracor. M.F.G.L has received consulting and speaking fees from Pfizer and Grupo Biotoscana.


 
  • References

  • 1 Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel) 2017; 3 (04) 57
  • 2 Webb BJ, Ferraro JP, Rea S, Kaufusi S, Goodman BE, Spalding J. Epidemiology and clinical features of invasive fungal infection in a US health care network. Open Forum Infect Dis 2018; 5 (08) ofy187
  • 3 Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004; 39 (03) 309-317
  • 4 Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007; 20 (01) 133-163
  • 5 Chapman B, Slavin M, Marriott D. , et al; Australian and New Zealand Mycoses Interest Group. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother 2017; 72 (04) 1103-1108
  • 6 Magill SS, Edwards JR, Bamberg W. , et al; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014; 370 (13) 1198-1208
  • 7 Eggimann P, Bille J, Marchetti O. Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care 2011; 1 (01) 37
  • 8 Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 2014; 20 (06) (Suppl. 06) 5-10
  • 9 Pfaller MA, Diekema DJ, Gibbs DL. , et al; Global Antifungal Surveillance Group. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 2010; 48 (04) 1366-1377
  • 10 Jeffery-Smith A, Taori SK, Schelenz S. , et al; Candida auris Incident Management Team. Candida auris: a review of the literature. Clin Microbiol Rev 2017; 31 (01) 1-18
  • 11 Lockhart SR, Etienne KA, Vallabhaneni S. , et al. Simultaneous emergence of multidrug-resistant candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 2017; 64 (02) 134-140
  • 12 Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 2011; 10 (02) 112-122
  • 13 Fisher JF, Sobel JD, Kauffman CA, Newman CA. Candida urinary tract infections--treatment. Clin Infect Dis 2011; 52 (06) (Suppl. 06) S457-S466
  • 14 Pemán J, Ruiz-Gaitán A. Candidemia from urinary tract source: the challenge of candiduria. Hosp Pract (1995) 2018; 46 (05) 243-245
  • 15 Wang K, Hsueh K, Kronen R. , et al. Creation and assessment of a clinical predictive model for candidaemia in patients with candiduria. Mycoses 2019; 62 (07) 554-561
  • 16 van de Veerdonk FL, Kullberg BJ, Netea MG. Pathogenesis of invasive candidiasis. Curr Opin Crit Care 2010; 16 (05) 453-459
  • 17 Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Primers 2018; 4 (May): 18026
  • 18 Kumar V, Cheng SC, Johnson MD. , et al. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun 2014; 5: 4675
  • 19 Plantinga TS, Johnson MD, Scott WK. , et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis 2012; 205 (06) 934-943
  • 20 Andes DR, Safdar N, Baddley JW. , et al; Mycoses Study Group. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 2012; 54 (08) 1110-1122
  • 21 Breazzano MP, Day Jr HR, Bloch KC. , et al. Utility of ophthalmologic screening for patients with candida bloodstream infections: a systematic review. JAMA Ophthalmol 2019; 137 (06) 698-710
  • 22 Shields BE, Rosenbach M, Brown-Joel Z, Berger AP, Ford BA, Wanat KA. Angioinvasive fungal infections impacting the skin: background, epidemiology, and clinical presentation. J Am Acad Dermatol 2019; 80 (04) 869.e5-880.e5
  • 23 Baddley JW, Benjamin Jr DK, Patel M. , et al; International Collaboration on Endocarditis-Prospective Cohort Study Group (ICE-PCS). Candida infective endocarditis. Eur J Clin Microbiol Infect Dis 2008; 27 (07) 519-529
  • 24 Fernández-Cruz A, Cruz Menárguez M, Muñoz P. , et al; GAME Study Group (Grupo de Apoyo al Manejo de la Endocarditis). The search for endocarditis in patients with candidemia: a systematic recommendation for echocardiography? A prospective cohort. Eur J Clin Microbiol Infect Dis 2015; 34 (08) 1543-1549
  • 25 Sánchez-Portocarrero J, Pérez-Cecilia E, Corral O, Romero-Vivas J, Picazo JJ. The central nervous system and infection by Candida species. Diagn Microbiol Infect Dis 2000; 37 (03) 169-179
  • 26 Parker Jr JC, McCloskey JJ, Lee RS. Human cerebral candidosis--a postmortem evaluation of 19 patients. Hum Pathol 1981; 12 (01) 23-28
  • 27 Pappas PG, Kauffman CA, Andes DR. , et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62 (04) e1-e50
  • 28 Lanternier F, Mahdaviani SA, Barbati E. , et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol 2015; 135 (06) 1558.e2-68.e2
  • 29 Clancy CJ, Nguyen MH. Diagnosing invasive candidiasis. J Clin Microbiol 2018; 56 (05) 1-9
  • 30 Ericson EL, Klingspor L, Ullberg M, Özenci V. Clinical comparison of the Bactec Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN blood culture vials for the detection of candidemia. Diagn Microbiol Infect Dis 2012; 73 (02) 153-156
  • 31 Meyer MH, Letscher-Bru V, Jaulhac B, Waller J, Candolfi E. Comparison of mycosis IC/F and plus aerobic/F media for diagnosis of fungemia by the bactec 9240 system. J Clin Microbiol 2004; 42 (02) 773-777
  • 32 Lockhart SR, Jackson BR, Vallabhaneni S, Ostrosky-Zeichner L, Pappas PG, Chiller T. Thinking beyond the common Candida species: need for species-level identification of Candida due to the emergence of multidrug-resistant Candida auris. J Clin Microbiol 2017; 55 (12) 3324-3327
  • 33 Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis 2011; 52 (06) 750-770
  • 34 Onishi A, Sugiyama D, Kogata Y. , et al. Diagnostic accuracy of serum 1,3-β-D-glucan for pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol 2012; 50 (01) 7-15
  • 35 He S, Hang JP, Zhang L, Wang F, Zhang DC, Gong FH. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-D-glucan for invasive fungal infection: focus on cutoff levels. J Microbiol Immunol Infect 2015; 48 (04) 351-361
  • 36 Hanson KE, Pfeiffer CD, Lease ED. , et al. β-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS One 2012; 7 (08) e42282
  • 37 Ellis M, Al-Ramadi B, Finkelman M. , et al. Assessment of the clinical utility of serial β-D-glucan concentrations in patients with persistent neutropenic fever. J Med Microbiol 2008; 57 (Pt 3): 287-295
  • 38 Fortún J, Meije Y, Buitrago MJ. , et al. Clinical validation of a multiplex real-time PCR assay for detection of invasive candidiasis in intensive care unit patients. J Antimicrob Chemother 2014; 69 (11) 3134-3141
  • 39 Tissot F, Lamoth F, Hauser PM. , et al; Fungal Infection Network of Switzerland (FUNGINOS). β-Glucan antigenemia anticipates diagnosis of blood culture-negative intraabdominal candidiasis. Am J Respir Crit Care Med 2013; 188 (09) 1100-1109
  • 40 Jaijakul S, Vazquez JA, Swanson RN, Ostrosky-Zeichner L. (1,3)-β-D-Glucan as a prognostic marker of treatment response in invasive candidiasis. Clin Infect Dis 2012; 55 (04) 521-526
  • 41 Sims CR, Jaijakul S, Mohr J, Rodriguez J, Finkelman M, Ostrosky-Zeichner L. Correlation of clinical outcomes with β-glucan levels in patients with invasive candidiasis. J Clin Microbiol 2012; 50 (06) 2104-2106
  • 42 Nucci M, Nouér SA, Esteves P. , et al. Discontinuation of empirical antifungal therapy in ICU patients using 1,3-β-d-glucan. J Antimicrob Chemother 2016; 71 (09) 2628-2633
  • 43 Posteraro B, Tumbarello M, De Pascale G. , et al. (1,3)-β-d-Glucan-based antifungal treatment in critically ill adults at high risk of candidaemia: an observational study. J Antimicrob Chemother 2016; 71 (08) 2262-2269
  • 44 Neely LA, Audeh M, Phung NA. , et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med 2013; 5 (182) 182ra54
  • 45 Mylonakis E, Zacharioudakis IM, Clancy CJ, Nguyen MH, Pappas PG. Efficacy of T2 magnetic resonance assay in monitoring candidemia after initiation of antifungal therapy: The serial therapeutic and antifungal monitoring protocol (STAMP) trial. J Clin Microbiol 2018; 56 (04) 1-9
  • 46 Clancy CJ, Pappas PG, Vazquez J. , et al. Detecting Infections Rapidly and Easily for Candidemia Trial, Part 2 (DIRECT2): a prospective, multicenter study of the T2Candida panel. Clin Infect Dis 2018; 66 (11) 1678-1686
  • 47 Mikulska M, Calandra T, Sanguinetti M, Poulain D, Viscoli C. ; Third European Conference on Infections in Leukemia Group. The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on Infections in Leukemia. Crit Care 2010; 14 (06) R222
  • 48 Avni T, Leibovici L, Paul M. PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol 2011; 49 (02) 665-670
  • 49 León C, Ruiz-Santana S, Saavedra P. , et al; Cava Study Group. Usefulness of the “Candida score” for discriminating between Candida colonization and invasive candidiasis in non-neutropenic critically ill patients: a prospective multicenter study. Crit Care Med 2009; 37 (05) 1624-1633
  • 50 Hermsen ED, Zapapas MK, Maiefski M, Rupp ME, Freifeld AG, Kalil AC. Validation and comparison of clinical prediction rules for invasive candidiasis in intensive care unit patients: a matched case-control study. Crit Care 2011; 15 (04) R198
  • 51 Paphitou NI, Ostrosky-Zeichner L, Rex JH. Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Med Mycol 2005; 43 (03) 235-243
  • 52 Ostrosky-Zeichner L, Pappas PG, Shoham S. , et al. Improvement of a clinical prediction rule for clinical trials on prophylaxis for invasive candidiasis in the intensive care unit. Mycoses 2011; 54 (01) 46-51
  • 53 Ostrosky-Zeichner L. Clinical prediction rules for invasive candidiasis in the ICU: ready for prime time?. Crit Care 2011; 15 (05) 189
  • 54 Dannaoui E, Desnos-Ollivier M, Garcia-Hermoso D. , et al; French Mycoses Study Group. Candida spp. with acquired echinocandin resistance, France, 2004-2010. Emerg Infect Dis 2012; 18 (01) 86-90
  • 55 Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008-2009). Diagn Microbiol Infect Dis 2010; 68 (03) 278-283
  • 56 Ben-Ami R, Olshtain-Pops K, Krieger M. , et al; Israeli Candidemia Study Group. Antibiotic exposure as a risk factor for fluconazole-resistant Candida bloodstream infection. Antimicrob Agents Chemother 2012; 56 (05) 2518-2523
  • 57 Oxman DA, Chow JK, Frendl G. , et al. Candidaemia associated with decreased in vitro fluconazole susceptibility: is Candida speciation predictive of the susceptibility pattern?. J Antimicrob Chemother 2010; 65 (07) 1460-1465
  • 58 Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 2012; 50 (04) 1199-1203
  • 59 Alexander BD, Johnson MD, Pfeiffer CD. , et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 2013; 56 (12) 1724-1732
  • 60 Clinical and Laboratory Standards Institute. M27–A3: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard—Third edition. Wayne, PA: CLSI; 2008
  • 61 Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W. ; EUCAST-AFST. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect 2012; 18 (07) E246-E247
  • 62 Fothergill AW, Sutton DA, McCarthy DI, Wiederhold NP. Impact of new antifungal breakpoints on antifungal resistance in Candida species. J Clin Microbiol 2014; 52 (03) 994-997
  • 63 Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Jones RN. Triazole and echinocandin MIC distributions with epidemiological cutoff values for differentiation of wild-type strains from non-wild-type strains of six uncommon species of Candida. J Clin Microbiol 2011; 49 (11) 3800-3804
  • 64 Pfaller MA, Boyken L, Hollis RJ. , et al. Wild-type MIC distributions and epidemiological cutoff values for posaconazole and voriconazole and Candida spp. as determined by 24-hour CLSI broth microdilution. J Clin Microbiol 2011; 49 (02) 630-637
  • 65 Nachimuthu N, Ostrosky-Zeichner L. Antifungal susceptibility testing: evolution, indications, and role in clinical practice. Curr Treat Options Infect Dis 2015; 7 (03) 155-162
  • 66 Vinikoor MJ, Zoghby J, Cohen KL, Tucker JD. Do all candidemic patients need an ophthalmic examination?. Int J Infect Dis 2013; 17 (03) e146-e148
  • 67 Nucci M. Persistent candidemia: causes and investigations. Curr Fungal Infect Rep 2011; 5 (01) 3-11
  • 68 Agnelli C, Valerio M, Bouza E. , et al; COMIC Study Group (Collaborative Group on Mycosis). Persistent Candidemia in adults: underlying causes and clinical significance in the antifungal stewardship era. Eur J Clin Microbiol Infect Dis 2019; 38 (03) 607-614
  • 69 Garey KW, Rege M, Pai MP. , et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 2006; 43 (01) 25-31
  • 70 Taur Y, Cohen N, Dubnow S, Paskovaty A, Seo SK. Effect of antifungal therapy timing on mortality in cancer patients with candidemia. Antimicrob Agents Chemother 2010; 54 (01) 184-190
  • 71 Kollef M, Micek S, Hampton N, Doherty JA, Kumar A. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis 2012; 54 (12) 1739-1746
  • 72 Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 2005; 49 (09) 3640-3645
  • 73 Grim SA, Berger K, Teng C. , et al. Timing of susceptibility-based antifungal drug administration in patients with Candida bloodstream infection: correlation with outcomes. J Antimicrob Chemother 2012; 67 (03) 707-714
  • 74 Mora-Duarte J, Betts R, Rotstein C. , et al; Caspofungin Invasive Candidiasis Study Group. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 2002; 347 (25) 2020-2029
  • 75 Kuse ER, Chetchotisakd P, da Cunha CA. , et al; Micafungin Invasive Candidiasis Working Group. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet 2007; 369 (9572): 1519-1527
  • 76 Reboli AC, Rotstein C, Pappas PG. , et al; Anidulafungin Study Group. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 2007; 356 (24) 2472-2482
  • 77 Reboli AC, Shorr AF, Rotstein C. , et al. Anidulafungin compared with fluconazole for treatment of candidemia and other forms of invasive candidiasis caused by Candida albicans: a multivariate analysis of factors associated with improved outcome. BMC Infect Dis 2011; 11: 261
  • 78 Vazquez J, Reboli AC, Pappas PG. , et al. Evaluation of an early step-down strategy from intravenous anidulafungin to oral azole therapy for the treatment of candidemia and other forms of invasive candidiasis: results from an open-label trial. BMC Infect Dis 2014; 14 (01) 97
  • 79 Kullberg BJ, Sobel JD, Ruhnke M. , et al. Voriconazole versus a regimen of amphotericin B followed by fluconazole for candidaemia in non-neutropenic patients: a randomised non-inferiority trial. Lancet 2005; 366 (9495): 1435-1442
  • 80 Thompson III GR, Wiederhold NP. Isavuconazole: a comprehensive review of spectrum of activity of a new triazole. Mycopathologia 2010; 170 (05) 291-313
  • 81 Kullberg BJ, Viscoli C, Pappas PG. , et al. Isavuconazole versus caspofungin in the treatment of candidemia and other invasive candida infections: the ACTIVE trial. Clin Infect Dis 2019; 68 (12) 1981-1989
  • 82 Spec A, Pullman J, Thompson GR. , et al; Mycoses Study Group. MSG-10: a phase 2 study of oral ibrexafungerp (SCY-078) following initial echinocandin therapy in non-neutropenic patients with invasive candidiasis. J Antimicrob Chemother 2019; 74 (10) 3056-3062
  • 83 Hager CL, Larkin EL, Long L, Zohra Abidi F, Shaw KJ, Ghannoum MA. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris. Antimicrob Agents Chemother 2018; 62 (03) e02319-e17
  • 84 Sofjan AK, Mitchell A, Shah DN. , et al. Rezafungin (CD101), a next-generation echinocandin: a systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist 2018; 14: 58-64
  • 85 Tóth Z, Forgács L, Locke JB. , et al. In vitro activity of rezafungin against common and rare Candida species and Saccharomyces cerevisiae. J Antimicrob Chemother 2019; 74 (12) 3505-3510
  • 86 Lepak AJ, Zhao M, Andes DR. Pharmacodynamic evaluation of rezafungin (CD101) against Candida auris in the neutropenic mouse invasive candidiasis model. Antimicrob Agents Chemother 2018; 62 (11) 1-4
  • 87 Lau AF, Kabir M, Chen SCA. , et al. Candida colonization as a risk marker for invasive candidiasis in mixed medical-surgical intensive care units: development and evaluation of a simple, standard protocol. J Clin Microbiol 2015; 53 (04) 1324-1330
  • 88 Pittet D, Monod M, Suter PM, Frenk E, Auckenthaler R. Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg 1994; 220 (06) 751-758
  • 89 Eschenauer G, Depestel DD, Carver PL. Comparison of echinocandin antifungals. Ther Clin Risk Manag 2007; 3 (01) 71-97
  • 90 Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 2013; 73 (09) 919-934
  • 91 Allen D, Wilson D, Drew R, Perfect J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti Infect Ther 2015; 13 (06) 787-798
  • 92 Levine MT, Chandrasekar PH. Adverse effects of voriconazole: over a decade of use. Clin Transplant 2016; 30 (11) 1377-1386
  • 93 Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother 2002; 49 (Suppl. 01) 31-36