Semin Liver Dis 2020; 40(02): 189-212
DOI: 10.1055/s-0040-1701444
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice

Go Sugahara
1   Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
2   Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
,
Yuji Ishida
1   Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
2   Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
,
Jeffrey Sun
1   Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
,
Chise Tateno
2   Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
,
Takeshi Saito
1   Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
3   USC Research Center for Liver Diseases, Los Angeles, California
› Author Affiliations
Financial Support This work was supported by funds from NIH NIAAA (R21AA022751: TS), NIH NIAID (R21AI139954: TS), NIH NIDDK (RO1DK101773: TS), and research funding from PhoenixBio.
Further Information

Publication History

Publication Date:
19 February 2020 (online)

Abstract

Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.

 
  • References

  • 1 Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 1977; 72 (02) 441-455
  • 2 Cheng X, Kim SY, Okamoto H. , et al. Glucagon contributes to liver zonation. Proc Natl Acad Sci U S A 2018; 115 (17) E4111-E4119
  • 3 Dancygier H. Clinical Hepatology Principles and Practice of Hepatobiliary Diseases. Berlin, Heidelberg: Springer; 2010: 75 102
  • 4 Kaji H. High-density lipoproteins and the immune system. J Lipids 2013; 2013: 684903
  • 5 Dandri M, Burda MR, Török E. , et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001; 33 (04) 981-988
  • 6 Mercer DF, Schiller DE, Elliott JF. , et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med 2001; 7 (08) 927-933
  • 7 Tateno C, Yoshizane Y, Saito N. , et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol 2004; 165 (03) 901-912
  • 8 Azuma H, Paulk N, Ranade A. , et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 2007; 25 (08) 903-910
  • 9 Bissig KD, Le TT, Woods NB, Verma IM. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A 2007; 104 (51) 20507-20511
  • 10 Suemizu H, Hasegawa M, Kawai K. , et al. Establishment of a humanized model of liver using NOD/Shi-SCID IL2Rgnull mice. Biochem Biophys Res Commun 2008; 377 (01) 248-252
  • 11 Kawahara T, Douglas DN, Lewis J. , et al. Critical role of natural killer cells in the rejection of human hepatocytes after xenotransplantation into immunodeficient mice. Transpl Int 2010; 23 (09) 934-943
  • 12 Washburn ML, Bility MT, Zhang L. , et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 2011; 140 (04) 1334-1344
  • 13 Hasegawa M, Kawai K, Mitsui T. , et al. The reconstituted ‘humanized liver’ in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 2011; 405 (03) 405-410
  • 14 Su B, Liu C, Xiang D. , et al. Xeno-repopulation of Fah -/- Nod/Scid mice livers by human hepatocytes. Sci China Life Sci 2011; 54 (03) 227-234
  • 15 Tesfaye A, Stift J, Maric D, Cui Q, Dienes HP, Feinstone SM. Chimeric mouse model for the infection of hepatitis B and C viruses. PLoS One 2013; 8 (10) e77298
  • 16 Komori J, DeWard AD, Gramignoli R, Strom SC, Fontes P, Lagasse E. Potential barriers to human hepatocyte transplantation in MUP-uPAtg(+/+)Rag2/γC/ mice. Cell Transplant 2014; 23 (12) 1537-1544
  • 17 Kato K, Ohbuchi M, Hamamura S. , et al. Development of murine Cyp3a knockout chimeric mice with humanized liver. Drug Metab Dispos 2015; 43 (08) 1208-1217
  • 18 Tateno C, Kawase Y, Tobita Y. , et al. Generation of novel chimeric mice with humanized livers by using hemizygous cDNA-uPA/SCID mice. PLoS One 2015; 10 (11) e0142145
  • 19 de Jong YP, Dorner M, Mommersteeg MC. , et al. Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 2014; 6 (254): 254ra129
  • 20 Barzi M, Pankowicz FP, Zorman B. , et al. A novel humanized mouse lacking murine P450 oxidoreductase for studying human drug metabolism. Nat Commun 2017; 8 (01) 39
  • 21 Tateno C, Yoshizato K. Growth and differentiation in culture of clonogenic hepatocytes that express both phenotypes of hepatocytes and biliary epithelial cells. Am J Pathol 1996; 149 (05) 1593-1605
  • 22 Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Replacement of diseased mouse liver by hepatic cell transplantation. Science 1994; 263 (5150): 1149-1152
  • 23 Rhim JA, Sandgren EP, Palmiter RD, Brinster RL. Complete reconstitution of mouse liver with xenogeneic hepatocytes. Proc Natl Acad Sci U S A 1995; 92 (11) 4942-4946
  • 24 Yamasaki C, Tateno C, Aratani A. , et al. Growth and differentiation of colony-forming human hepatocytes in vitro. J Hepatol 2006; 44 (04) 749-757
  • 25 Knobeloch D, Ehnert S, Schyschka L. , et al. Human hepatocytes: isolation, culture, and quality procedures. Methods Mol Biol 2012; 806: 99-120
  • 26 Kawahara T, Toso C, Douglas DN. , et al. Factors affecting hepatocyte isolation, engraftment, and replication in an in vivo model. Liver Transpl 2010; 16 (08) 974-982
  • 27 Kelland LR. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 2004; 40 (06) 827-836
  • 28 Jung D, Alt FW, Unraveling V. Unraveling V(D)J recombination; insights into gene regulation. Cell 2004; 116 (02) 299-311
  • 29 Cao X, Shores EW, Hu-Li J. , et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 1995; 2 (03) 223-238
  • 30 Ogasawara K, Hamerman JA, Hsin H. , et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 2003; 18 (01) 41-51
  • 31 Kataoka S, Satoh J, Fujiya H. , et al. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes 1983; 32 (03) 247-253
  • 32 Pearson T, Markees TG, Serreze DV. , et al. Genetic dissociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J Immunol 2003; 171 (01) 185-195
  • 33 Sandgren EP, Palmiter RD, Heckel JL, Daugherty CC, Brinster RL, Degen JL. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 1991; 66 (02) 245-256
  • 34 Heckel JL, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Neonatal bleeding in transgenic mice expressing urokinase-type plasminogen activator. Cell 1990; 62 (03) 447-456
  • 35 Grompe M, al-Dhalimy M, Finegold M. , et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 1993; 7 (12A): 2298-2307
  • 36 Rubsam LZ, Davidson BL, Shewach DS. Superior cytotoxicity with ganciclovir compared with acyclovir and 1-beta-D-arabinofuranosylthymine in herpes simplex virus-thymidine kinase-expressing cells: a novel paradigm for cell killing. Cancer Res 1998; 58 (17) 3873-3882
  • 37 Bissig KD, Wieland SF, Tran P. , et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 2010; 120 (03) 924-930
  • 38 Lodish H, Berk A, Zipursky SL. , et al. Molecular Cell Biology. 4th ed. New York: W. H. Freeman; 2000
  • 39 Eddy AA, Fogo AB. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 2006; 17 (11) 2999-3012
  • 40 Miyazawa K. Hepatocyte growth factor activator (HGFA): a serine protease that links tissue injury to activation of hepatocyte growth factor. FEBS J 2010; 277 (10) 2208-2214
  • 41 Mizuno K, Tanoue Y, Okano I, Harano T, Takada K, Nakamura T. Purification and characterization of hepatocyte growth factor (HGF)-converting enzyme: activation of pro-HGF. Biochem Biophys Res Commun 1994; 198 (03) 1161-1169
  • 42 Shimizu M, Hara A, Okuno M. , et al. Mechanism of retarded liver regeneration in plasminogen activator-deficient mice: impaired activation of hepatocyte growth factor after Fas-mediated massive hepatic apoptosis. Hepatology 2001; 33 (03) 569-576
  • 43 Hill KS, Gaziova I, Harrigal L. , et al. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer. PLoS One 2012; 7 (07) e40420
  • 44 Kaplowitz N. Drug-Induced Liver Disease. 3rd ed. London: Elsevier; 2013
  • 45 Castro-Dopico T, Clatworthy MR. Fcγ receptors in solid organ transplantation. Curr Transplant Rep 2016; 3 (04) 284-293
  • 46 Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 2014; 258 (01) 241-258
  • 47 Kawahara T, Rodriguez-Barbosa JI, Zhao Y, Zhao G, Sykes M. Global unresponsiveness as a mechanism of natural killer cell tolerance in mixed xenogeneic chimeras. Am J Transplant 2007; 7 (09) 2090-2097
  • 48 Orr MT, Lanier LL. Natural killer cell education and tolerance. Cell 2010; 142 (06) 847-856
  • 49 McEnerney L, Duncan K, Bang BR. , et al. Dual modulation of human hepatic zonation via canonical and non-canonical Wnt pathways. Exp Mol Med 2017; 49 (12) e413
  • 50 Chow EC, Wang JZ, Quach HP. , et al. Functional integrity of the chimeric (humanized) mouse liver: enzyme zonation, physiologic spaces, and hepatic enzymes and transporters. Drug Metab Dispos 2016; 44 (09) 1524-1535
  • 51 Kakuni M, Yamasaki C, Tachibana A, Yoshizane Y, Ishida Y, Tateno C. Chimeric mice with humanized livers: a unique tool for in vivo and in vitro enzyme induction studies. Int J Mol Sci 2013; 15 (01) 58-74
  • 52 Tateno C, Miya F, Wake K. , et al. Morphological and microarray analyses of human hepatocytes from xenogeneic host livers. Lab Invest 2013; 93 (01) 54-71
  • 53 Vinken M, Henkens T, De Rop E, Fraczek J, Vanhaecke T, Rogiers V. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 2008; 47 (03) 1077-1088
  • 54 Peterson RA, Krull DL, Brown HR, de Serres M. Morphologic characterization of PhoenixBio (uPA+/+/SCID) humanized liver chimeric mouse model. Drug Metab Lett 2010; 4 (03) 180-184
  • 55 Meuleman P, Libbrecht L, De Vos R. , et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 2005; 41 (04) 847-856
  • 56 Wake K. Hepatic stellate cells: three-dimensional structure, localization, heterogeneity and development. Proc Jpn Acad, Ser B, Phys Biol Sci 2006; 82 (04) 155-164
  • 57 Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver. Int J Biochem Cell Biol 2009; 41 (8-9): 1639-1642
  • 58 Phillips MJ, Poucell S, Patterson J, Valencia P. The Liver: An Atlas and Text of Ultrastructural Pathology. New York, NY: Raven Press; 1987
  • 59 Ekdahl A, Weidolf L, Baginski M, Morikawa Y, Thompson RA, Wilson ID. The metabolic fate of fenclozic acid in chimeric mice with a humanized liver. Arch Toxicol 2018; 92 (09) 2819-2828
  • 60 Xu D, Wu M, Nishimura S. , et al. Chimeric TK-NOG mice: a predictive model for cholestatic human liver toxicity. J Pharmacol Exp Ther 2015; 352 (02) 274-280
  • 61 Fujino C, Sanoh S, Tamura Y. , et al. Changes in bile acid concentrations in chimeric mice transplanted with different replacement indexes of human hepatocytes. BPB Rep 2019; 2: 29-34
  • 62 Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 2017; 152 (07) 1679-1694 .e3
  • 63 Cani PD. Microbiota and metabolites in metabolic diseases. Nat Rev Endocrinol 2019; 15 (02) 69-70
  • 64 Du Toit A. The gut microbiome and mental health. Nat Rev Microbiol 2019; 17 (04) 196
  • 65 Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathol Biol (Paris) 2010; 58 (04) 258-266
  • 66 Koziel MJ. Cellular immune responses against hepatitis C virus. Clin Infect Dis 2005; 41 (Suppl. 01) S25-S31
  • 67 Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70 (02) 249-259
  • 68 Sutti S, Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol 2020; 17 (02) 81-92
  • 69 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; Clinical Practice Guideline Panel: Chair; Panel members; EASL Governing Board representative. EASL Clinical Practice Guidelines: Drug-induced liver injury. J Hepatol 2019; 70 (06) 1222-1261
  • 70 Urban TJ, Daly AK, Aithal GP. Genetic basis of drug-induced liver injury: present and future. Semin Liver Dis 2014; 34 (02) 123-133
  • 71 Bility MT, Li F, Cheng L, Su L. Liver immune-pathogenesis and therapy of human liver tropic virus infection in humanized mouse models. J Gastroenterol Hepatol 2013; 28 (Suppl. 01) 120-124
  • 72 Bility MT, Cheng L, Zhang Z. , et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 2014; 10 (03) e1004032
  • 73 Dusséaux M, Masse-Ranson G, Darche S. , et al. Viral load affects the immune response to HBV in mice with humanized immune system and liver. Gastroenterology 2017; 153 (06) 1647-1661 .e9
  • 74 Washburn K. Model for end-stage liver disease exceptions: proceed with caution. Liver Transpl 2011; 17 (10) 1123-1124
  • 75 Billerbeck E, Mommersteeg MC, Shlomai A. , et al. Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. J Hepatol 2016; 65 (02) 334-343
  • 76 Keng CT, Sze CW, Zheng D. , et al. Characterisation of liver pathogenesis, human immune responses and drug testing in a humanised mouse model of HCV infection. Gut 2016; 65 (10) 1744-1753
  • 77 Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7 (02) 118-130
  • 78 Christianson SW, Greiner DL, Hesselton RA. , et al. Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-SCID mice. J Immunol 1997; 158 (08) 3578-3586
  • 79 McKenzie JL, Gan OI, Doedens M, Dick JE. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 2005; 106 (04) 1259-1261
  • 80 Forte P, Baumann BC, Weiss EH, Seebach JD. HLA-E expression on porcine cells: protection from human NK cytotoxicity depends on peptide loading. Am J Transplant 2005; 5 (09) 2085-2093
  • 81 Shultz LD, Banuelos S, Lyons B. , et al. NOD/LtSz-Rag1nullPfpnull mice: a new model system with increased levels of human peripheral leukocyte and hematopoietic stem-cell engraftment. Transplantation 2003; 76 (07) 1036-1042
  • 82 Tian X, Woll PS, Morris JK, Linehan JL, Kaufman DS. Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 2006; 24 (05) 1370-1380
  • 83 Navarro-Alvarez N, Yang YG. CD47: a new player in phagocytosis and xenograft rejection. Cell Mol Immunol 2011; 8 (04) 285-288
  • 84 Yang YG. CD47 in xenograft rejection and tolerance induction. Xenotransplantation 2010; 17 (04) 267-273
  • 85 Yamauchi T, Takenaka K, Urata S. , et al. Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood 2013; 121 (08) 1316-1325
  • 86 Takenaka K, Prasolava TK, Wang JC. , et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8 (12) 1313-1323
  • 87 Ito M, Hiramatsu H, Kobayashi K. , et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100 (09) 3175-3182
  • 88 Shultz LD, Lyons BL, Burzenski LM. , et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174 (10) 6477-6489
  • 89 Uchida T, Hiraga N, Imamura M. , et al. Human cytotoxic T lymphocyte-mediated acute liver failure and rescue by immunoglobulin in human hepatocyte transplant TK-NOG mice. J Virol 2015; 89 (19) 10087-10096
  • 90 Ellis EC, Naugler WE, Parini P. , et al. Mice with chimeric livers are an improved model for human lipoprotein metabolism. PLoS One 2013; 8 (11) e78550
  • 91 Chiang JY. Bile acid metabolism and signaling. Compr Physiol 2013; 3 (03) 1191-1212
  • 92 Naugler WE, Tarlow BD, Fedorov LM. , et al. Fibroblast growth factor signaling controls liver size in mice with humanized livers. Gastroenterology 2015; 149 (03) 728-40 .e15
  • 93 Chow EC, Quach HP, Zhang Y. , et al. Disrupted murine gut-to-human liver signaling alters bile acid homeostasis in humanized mouse liver models. J Pharmacol Exp Ther 2017; 360 (01) 174-191
  • 94 Tateno C, Kataoka M, Utoh R. , et al. Growth hormone-dependent pathogenesis of human hepatic steatosis in a novel mouse model bearing a human hepatocyte-repopulated liver. Endocrinology 2011; 152 (04) 1479-1491
  • 95 Masumoto N, Tateno C, Tachibana A. , et al. GH enhances proliferation of human hepatocytes grafted into immunodeficient mice with damaged liver. J Endocrinol 2007; 194 (03) 529-537
  • 96 Sanoh S, Naritomi Y, Fujimoto M. , et al. Predictability of plasma concentration-time curves in humans using single-species allometric scaling of chimeric mice with humanized liver. Xenobiotica 2015; 45 (07) 605-614
  • 97 Katoh M, Sawada T, Soeno Y. , et al. In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver. J Pharm Sci 2007; 96 (02) 428-437
  • 98 Katoh M, Matsui T, Nakajima M. , et al. Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab Dispos 2004; 32 (12) 1402-1410
  • 99 Katoh M, Matsui T, Okumura H. , et al. Expression of human phase II enzymes in chimeric mice with humanized liver. Drug Metab Dispos 2005; 33 (09) 1333-1340
  • 100 Foquet L, Wilson EM, Verhoye L. , et al. Successful engraftment of human hepatocytes in uPA-SCID and FRG® KO mice. Methods Mol Biol 2017; 1506: 117-130
  • 101 Vanwolleghem T, Libbrecht L, Hansen BE. et al. Factors determining successful engraftment of hepatocytes and susceptibility to hepatitis B and C virus infection in uPA-SCID mice. J Hepatol 2010; 53: 468-476
  • 102 Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology 2014; 59 (04) 1617-1626
  • 103 Yin Y, Lim YK, Salto-Tellez M, Ng SC, Lin CS, Lim SK. AFP(+), ESC-derived cells engraft and differentiate into hepatocytes in vivo. Stem Cells 2002; 20 (04) 338-346
  • 104 Greider CW. Telomeres and senescence: the history, the experiment, the future. Curr Biol 1998; 8 (05) R178-R181
  • 105 Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 2015; 350 (6265): 1193-1198
  • 106 Watari R, Kakiki M, Oshikata A. , et al. A long-term culture system based on a collagen vitrigel membrane chamber that supports liver-specific functions of hepatocytes isolated from mice with humanized livers. J Toxicol Sci 2018; 43 (08) 521-529
  • 107 Ishida Y, Yamasaki C, Yanagi A. , et al. Novel robust in vitro hepatitis B virus infection model using fresh human hepatocytes isolated from humanized mice. Am J Pathol 2015; 185 (05) 1275-1285
  • 108 Maher SP, Crouse RB, Conway AJ. , et al. Microphysical space of a liver sinusoid device enables simplified long-term maintenance of chimeric mouse-expanded human hepatocytes. Biomed Microdevices 2014; 16 (05) 727-736
  • 109 Kanamori T, Togawa-Iwata Y, Segawa H. , et al. Use of hepatocytes isolated from a liver-humanized mouse for studies on the metabolism of drugs: application to the metabolism of fentanyl and acetylfentanyl. Forensic Toxicol 2018; 36 (02) 467-475
  • 110 Watari R, Kakiki M, Yamasaki C. , et al. Prediction of human hepatic clearance for cytochrome P450 substrates via a new culture method using the collagen vitrigel membrane chamber and fresh hepatocytes isolated from liver humanized mice. Biol Pharm Bull 2019; 42 (03) 348-353
  • 111 Kanamori T, Iwata YT, Segawa H. , et al. Metabolism of butyrylfentanyl in fresh human hepatocytes: chemical synthesis of authentic metabolite standards for definitive identification. Biol Pharm Bull 2019; 42 (04) 623-630
  • 112 Vorrink SU, Ullah S, Schmidt S. , et al. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J 2017; 31 (06) 2696-2708
  • 113 Lauschke VM, Shafagh RZ, Hendriks DFG, Ingelman-Sundberg M. 3D primary hepatocyte culture systems for analyses of liver diseases, drug metabolism, and toxicity: emerging culture paradigms and applications. Biotechnol J 2019; 14 (07) e1800347
  • 114 Petersen J, Dandri M, Gupta S, Rogler CE. Liver repopulation with xenogenic hepatocytes in B and T cell-deficient mice leads to chronic hepadnavirus infection and clonal growth of hepatocellular carcinoma. Proc Natl Acad Sci U S A 1998; 95 (01) 310-315
  • 115 WHO. Global Hepatitis Report, 2017. Available at: https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/ . Accessed January 27, 2020
  • 116 Moyer MW. American epidemic. Sci Am 2018; 318 (05) 44-57
  • 117 Hirai-Yuki A, Hensley L, McGivern DR. , et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science 2016; 353 (6307): 1541-1545
  • 118 Yang Y, Liang Y, Qu L. , et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci U S A 2007; 104 (17) 7253-7258
  • 119 Win NN, Kanda T, Nakamoto S. , et al. Inhibitory effect of Japanese rice-koji miso extracts on hepatitis A virus replication in association with the elevation of glucose-regulated protein 78 expression. Int J Med Sci 2018; 15 (11) 1153-1159
  • 120 Dotzauer A, Gebhardt U, Bieback K. , et al. Hepatitis A virus-specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the Asialoglycoprotein receptor. J Virol 2000; 74 (23) 10950-10957
  • 121 Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet 2015; 386 (10003): 1546-1555
  • 122 Tang LSY, Covert E, Wilson E, Kottilil S. Chronic hepatitis B infection: a review. JAMA 2018; 319 (17) 1802-1813
  • 123 Sanada T, Tsukiyama-Kohara K, Yamamoto N. , et al. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes. Biochem Biophys Res Commun 2016; 469 (02) 229-235
  • 124 Tsukiyama-Kohara K, Kohara M. Tupaia belangeri as an experimental animal model for viral infection. Exp Anim 2014; 63 (04) 367-374
  • 125 Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 2011; 5 (201): 205-259
  • 126 Yan H, Zhong G, Xu G. , et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012; 1: e00049
  • 127 Yan H, Peng B, He W. , et al. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol 2013; 87 (14) 7977-7991
  • 128 Iwamoto M, Watashi K, Tsukuda S. , et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem Biophys Res Commun 2014; 443 (03) 808-813
  • 129 Lempp FA, Wiedtke E, Qu B. , et al. Sodium taurocholate cotransporting polypeptide is the limiting host factor of hepatitis B virus infection in macaque and pig hepatocytes. Hepatology 2017; 66 (03) 703-716
  • 130 Li H, Zhuang Q, Wang Y. , et al. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol Immunol 2014; 11 (02) 175-183
  • 131 Tabuchi A, Tanaka J, Katayama K. , et al. Titration of hepatitis B virus infectivity in the sera of pre-acute and late acute phases of HBV infection: transmission experiments to chimeric mice with human liver repopulated hepatocytes. J Med Virol 2008; 80 (12) 2064-2068
  • 132 Allweiss L, Dandri M. Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol 2016; 64 (1, Suppl): S17-S31
  • 133 Hayes CN, Chayama K. HBV culture and infectious systems. Hepatol Int 2016; 10 (04) 559-566
  • 134 Ishida Y, Chung TL, Imamura M. , et al. Acute hepatitis B virus infection in humanized chimeric mice has multiphasic viral kinetics. Hepatology 2018; 68 (02) 473-484
  • 135 Tsuge M, Hiraga N, Takaishi H. , et al. Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis B virus. Hepatology 2005; 42 (05) 1046-1054
  • 136 Schulze A, Mills K, Weiss TS, Urban S. Hepatocyte polarization is essential for the productive entry of the hepatitis B virus. Hepatology 2012; 55 (02) 373-383
  • 137 Werle-Lapostolle B, Bowden S, Locarnini S. , et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 2004; 126 (07) 1750-1758
  • 138 Wong DK, Yuen MF, Ngai VW, Fung J, Lai CL. One-year entecavir or lamivudine therapy results in reduction of hepatitis B virus intrahepatic covalently closed circular DNA levels. Antivir Ther 2006; 11 (07) 909-916
  • 139 Volz T, Lutgehetmann M, Wachtler P. , et al. Impaired intrahepatic hepatitis B virus productivity contributes to low viremia in most HBeAg-negative patients. Gastroenterology 2007; 133 (03) 843-852
  • 140 Allweiss L, Volz T, Giersch K. , et al. Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 2018; 67 (03) 542-552
  • 141 Vermehren J, Park JS, Jacobson IM, Zeuzem S. Challenges and perspectives of direct antivirals for the treatment of hepatitis C virus infection. J Hepatol 2018; 69 (05) 1178-1187
  • 142 Chhatwal J, Wang X, Ayer T. , et al. Hepatitis C disease burden in the United States in the era of oral direct-acting antivirals. Hepatology 2016; 64 (05) 1442-1450
  • 143 Liang TJ, Ward JW. Hepatitis C in injection-drug users—a hidden danger of the opioid epidemic. N Engl J Med 2018; 378 (13) 1169-1171
  • 144 Lanford RE, Bigger C, Bassett S, Klimpel G. The chimpanzee model of hepatitis C virus infections. ILAR J 2001; 42 (02) 117-126
  • 145 Scull MA, Shi C, de Jong YP. , et al. Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology 2015; 62 (01) 57-67
  • 146 Chayama K, Hayes CN, Hiraga N, Abe H, Tsuge M, Imamura M. Animal model for study of human hepatitis viruses. J Gastroenterol Hepatol 2011; 26 (01) 13-18
  • 147 Mesalam AA, Vercauteren K, Meuleman P. Mouse systems to model hepatitis C virus treatment and associated resistance. Viruses 2016; 8 (06) 8
  • 148 Umehara T, Sudoh M, Yasui F. , et al. Serine palmitoyltransferase inhibitor suppresses HCV replication in a mouse model. Biochem Biophys Res Commun 2006; 346 (01) 67-73
  • 149 Hiraga N, Imamura M, Tsuge M. , et al. Infection of human hepatocyte chimeric mouse with genetically engineered hepatitis C virus and its susceptibility to interferon. FEBS Lett 2007; 581 (10) 1983-1987
  • 150 Shi N, Hiraga N, Imamura M. , et al. Combination therapies with NS5A, NS3 and NS5B inhibitors on different genotypes of hepatitis C virus in human hepatocyte chimeric mice. Gut 2013; 62 (07) 1055-1061
  • 151 Katsume A, Tokunaga Y, Hirata Y. , et al. A serine palmitoyltransferase inhibitor blocks hepatitis C virus replication in human hepatocytes. Gastroenterology 2013; 145 (04) 865-873
  • 152 Kim S, Date T, Yokokawa H. , et al. Development of hepatitis C virus genotype 3a cell culture system. Hepatology 2014; 60 (06) 1838-1850
  • 153 Wakita T, Pietschmann T, Kato T. , et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 2005; 11 (07) 791-796
  • 154 Yi M, Villanueva RA, Thomas DL, Wakita T, Lemon SM. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci U S A 2006; 103 (07) 2310-2315
  • 155 Lerat H, Honda M, Beard MR. , et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 2002; 122 (02) 352-365
  • 156 Dorner M, Horwitz JA, Donovan BM. , et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 2013; 501 (7466): 237-241
  • 157 Kneteman NM, Weiner AJ, O'Connell J. , et al. Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology 2006; 43 (06) 1346-1353
  • 158 Hughes SA, Wedemeyer H, Harrison PM. Hepatitis delta virus. Lancet 2011; 378 (9785): 73-85
  • 159 Taylor J, Mason W, Summers J. , et al. Replication of human hepatitis delta virus in primary cultures of woodchuck hepatocytes. J Virol 1987; 61 (09) 2891-2895
  • 160 Gudima S, He Y, Chai N. , et al. Primary human hepatocytes are susceptible to infection by hepatitis delta virus assembled with envelope proteins of woodchuck hepatitis virus. J Virol 2008; 82 (15) 7276-7283
  • 161 Chang J, Gudima SO, Tarn C, Nie X, Taylor JM. Development of a novel system to study hepatitis delta virus genome replication. J Virol 2005; 79 (13) 8182-8188
  • 162 Lütgehetmann M, Mancke LV, Volz T. , et al. Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation. Hepatology 2012; 55 (03) 685-694
  • 163 Giersch K, Helbig M, Volz T. , et al. Persistent hepatitis D virus mono-infection in humanized mice is efficiently converted by hepatitis B virus to a productive co-infection. J Hepatol 2014; 60 (03) 538-544
  • 164 Tsuge M, Uchida T, Walsh K. , et al. Early multiphasic HBV infection initiation kinetics is not clone-specific and is not affected by hepatitis D virus (HDV) infection. Viruses 2019; 11 (03) 11
  • 165 Giersch K, Homs M, Volz T. , et al. Both interferon alpha and lambda can reduce all intrahepatic HDV infection markers in HBV/HDV infected humanized mice. Sci Rep 2017; 7 (01) 3757
  • 166 Giersch K, Allweiss L, Volz T. , et al. Hepatitis delta co-infection in humanized mice leads to pronounced induction of innate immune responses in comparison to HBV mono-infection. J Hepatol 2015; 63 (02) 346-353
  • 167 Ye X, Tateno C, Thi EP. , et al. Hepatitis B virus therapeutic agent ARB-1740 has inhibitory effect on hepatitis delta virus in a new dually-infected humanized mouse model. ACS Infect Dis 2019; 5 (05) 738-749
  • 168 Jardi R, Rodriguez F, Buti M. , et al. Role of hepatitis B, C, and D viruses in dual and triple infection: influence of viral genotypes and hepatitis B precore and basal core promoter mutations on viral replicative interference. Hepatology 2001; 34 (02) 404-410
  • 169 Wu JC, Chen PJ, Kuo MY, Lee SD, Chen DS, Ting LP. Production of hepatitis delta virus and suppression of helper hepatitis B virus in a human hepatoma cell line. J Virol 1991; 65 (03) 1099-1104
  • 170 Blanchet M, Sureau C, Labonté P. Use of FDA approved therapeutics with hNTCP metabolic inhibitory properties to impair the HDV lifecycle. Antiviral Res 2014; 106: 111-115
  • 171 Kaneko M, Watashi K, Kamisuki S. , et al. A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate cotransporting polypeptide. J Virol 2015; 89 (23) 11945-11953
  • 172 Gudima S, He Y, Meier A. , et al. Assembly of hepatitis delta virus: particle characterization, including the ability to infect primary human hepatocytes. J Virol 2007; 81 (07) 3608-3617
  • 173 Gouttenoire J, Moradpour D. A mouse model for hepatitis E virus infection. J Hepatol 2016; 64 (05) 1003-1005
  • 174 Hoofnagle JH, Nelson KE, Purcell RH, Hepatitis E. Hepatitis E. N Engl J Med 2012; 367 (13) 1237-1244
  • 175 Zhu FC, Zhang J, Zhang XF. , et al. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010; 376 (9744): 895-902
  • 176 Patra S, Kumar A, Trivedi SS, Puri M, Sarin SK. Maternal and fetal outcomes in pregnant women with acute hepatitis E virus infection. Ann Intern Med 2007; 147 (01) 28-33
  • 177 Dalton HR, Keane FE, Bendall R, Mathew J, Ijaz S. Treatment of chronic hepatitis E in a patient with HIV infection. Ann Intern Med 2011; 155 (07) 479-480
  • 178 Lenggenhager D, Weber A, Hepatitis E. Hepatitis E virus and the liver: clinical settings and liver pathology. Gastroenterol Clin North Am 2017; 46 (02) 393-407
  • 179 Meng XJ. Expanding host range and cross-species infection of hepatitis E virus. PLoS Pathog 2016; 12 (08) e1005695
  • 180 Longer CF, Denny SL, Caudill JD. , et al. Experimental hepatitis E: pathogenesis in cynomolgus macaques (Macaca fascicularis). J Infect Dis 1993; 168 (03) 602-609
  • 181 Allweiss L, Gass S, Giersch K. , et al. Human liver chimeric mice as a new model of chronic hepatitis E virus infection and preclinical drug evaluation. J Hepatol 2016; 64 (05) 1033-1040
  • 182 Peters van Ton AM, Gevers TJ, Drenth JP. Antiviral therapy in chronic hepatitis E: a systematic review. J Viral Hepat 2015; 22 (12) 965-973
  • 183 van de Garde MDB, Pas SD, van Oord GW. , et al. Interferon-alpha treatment rapidly clears hepatitis E virus infection in humanized mice. Sci Rep 2017; 7 (01) 8267
  • 184 Morosan S, Hez-Deroubaix S, Lunel F. , et al. Liver-stage development of Plasmodium falciparum, in a humanized mouse model. J Infect Dis 2006; 193 (07) 996-1004
  • 185 Sacci Jr JB, Alam U, Douglas D. , et al. Plasmodium falciparum infection and exoerythrocytic development in mice with chimeric human livers. Int J Parasitol 2006; 36 (03) 353-360
  • 186 Vaughan AM, Mikolajczak SA, Wilson EM. , et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J Clin Invest 2012; 122 (10) 3618-3628
  • 187 Soulard V, Bosson-Vanga H, Lorthiois A. , et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nat Commun 2015; 6: 7690
  • 188 Kawahara T, Lisboa LF, Cader S. , et al. Human cytomegalovirus infection in humanized liver chimeric mice. Hepatol Res 2013; 43 (06) 679-684
  • 189 Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol 2016; 21: 75-80
  • 190 Lisowski L, Dane AP, Chu K. , et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 2014; 506 (7488): 382-386
  • 191 Vercauteren K, Hoffman BE, Zolotukhin I. , et al. Superior in vivo transduction of human hepatocytes using engineered AAV3 capsid. Mol Ther 2016; 24 (06) 1042-1049
  • 192 Paulk NK, Pekrun K, Zhu E. , et al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol Ther 2018; 26 (01) 289-303
  • 193 Bissig-Choisat B, Wang L, Legras X. , et al. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model. Nat Commun 2015; 6: 7339
  • 194 Manos MM, Leyden WA, Murphy RC, Terrault NA, Bell BP. Limitations of conventionally derived chronic liver disease mortality rates: results of a comprehensive assessment. Hepatology 2008; 47 (04) 1150-1157
  • 195 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 196 Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12 (04) 231-242
  • 197 Osna NA, Donohue Jr TM, Kharbanda KK. Alcoholic liver disease: pathogenesis and current management. Alcohol Res 2017; 38 (02) 147-161
  • 198 Glover SC, McPhie JL, Brunt PW. Cholestasis in acute alcoholic liver disease. Lancet 1977; 2 (8052-8053): 1305-1307
  • 199 Uchida T, Kao H, Quispe-Sjogren M, Peters RL. Alcoholic foamy degeneration—a pattern of acute alcoholic injury of the liver. Gastroenterology 1983; 84 (04) 683-692
  • 200 Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 2011; 141 (05) 1572-1585
  • 201 Addolorato G, Bataller R, Burra P. , et al. Liver transplantation for alcoholic liver disease. Transplantation 2016; 100 (05) 981-987
  • 202 Tsukamoto H, Towner SJ, Ciofalo LM, French SW. Ethanol-induced liver fibrosis in rats fed high fat diet. Hepatology 1986; 6 (05) 814-822
  • 203 Bertola A, Mathews S, Ki SH, Wang H, Gao B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 2013; 8 (03) 627-637
  • 204 Cho NE, Bang BR, Gurung P. , et al. Retinoid regulation of antiviral innate immunity in hepatocytes. Hepatology 2016; 63 (06) 1783-1795
  • 205 Lu Y, Wu D, Wang X, Ward SC, Cederbaum AI. Chronic alcohol-induced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice. Free Radic Biol Med 2010; 49 (09) 1406-1416
  • 206 Zakhari S, Li TK. Determinants of alcohol use and abuse: impact of quantity and frequency patterns on liver disease. Hepatology 2007; 46 (06) 2032-2039
  • 207 Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 2015; 22 (01) 31-53
  • 208 Chase JR, Poolman MG, Fell DA. Contribution of NADH increases to ethanol's inhibition of retinol oxidation by human ADH isoforms. Alcohol Clin Exp Res 2009; 33 (04) 571-580
  • 209 Nagy LE. The role of innate immunity in alcoholic liver disease. Alcohol Res 2015; 37 (02) 237-250
  • 210 Kazankov K, Jørgensen SMD, Thomsen KL. , et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2019; 16 (03) 145-159
  • 211 Jaeschke H. Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol 2002; 27 (01) 23-27
  • 212 Bautista AP. Neutrophilic infiltration in alcoholic hepatitis. Alcohol 2002; 27 (01) 17-21
  • 213 Sheron N, Bird G, Koskinas J. , et al. Circulating and tissue levels of the neutrophil chemotaxin interleukin-8 are elevated in severe acute alcoholic hepatitis, and tissue levels correlate with neutrophil infiltration. Hepatology 1993; 18 (01) 41-46
  • 214 Altamirano J, Miquel R, Katoonizadeh A. , et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 2014; 146 (05) 1231-9 .e1, 6
  • 215 DeWeerdt S. Disease progression: divergent paths. Nature 2017; 551 (7681): 551
  • 216 Lau JK, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol 2017; 241 (01) 36-44
  • 217 Bergen WG, Mersmann HJ. Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 2005; 135 (11) 2499-2502
  • 218 Zhang Y, Qin C, Yang L, Lu R, Zhao X, Nie G. A comparative genomics study of carbohydrate/glucose metabolic genes: from fish to mammals. BMC Genomics 2018; 19 (01) 246
  • 219 Lara-Castro C, Garvey WT. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin North Am 2008; 37 (04) 841-856
  • 220 Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 2006; 131 (03) 934-945
  • 221 Junker AE, Gluud LL, van Hall G, Holst JJ, Knop FK, Vilsbøll T. Effects of glucagon-like peptide-1 on glucagon secretion in patients with non-alcoholic fatty liver disease. J Hepatol 2016; 64 (04) 908-915
  • 222 Nagle CA, Klett EL, Coleman RA. Hepatic triacylglycerol accumulation and insulin resistance. J Lipid Res 2009; 50 (Suppl): S74-S79
  • 223 Shimobayashi M, Albert V, Woelnerhanssen B. , et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest 2018; 128 (04) 1538-1550
  • 224 Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 2012; 18 (03) 363-374
  • 225 de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2008; 582 (01) 97-105
  • 226 Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117 (01) 175-184
  • 227 Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci 2015; 36 (07) 461-470
  • 228 Stefan N, Häring HU. The role of hepatokines in metabolism. Nat Rev Endocrinol 2013; 9 (03) 144-152
  • 229 Yu Y, Liu Y, An W. , et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J Clin Invest 2019; 129 (02) 546-555
  • 230 Lefkowitch JH, Haythe JH, Regent N. Kupffer cell aggregation and perivenular distribution in steatohepatitis. Mod Pathol 2002; 15 (07) 699-704
  • 231 Kahraman A, Schlattjan M, Kocabayoglu P. , et al. Major histocompatibility complex class I-related chains A and B (MIC A/B): a novel role in nonalcoholic steatohepatitis. Hepatology 2010; 51 (01) 92-102
  • 232 Tosello-Trampont AC, Krueger P, Narayanan S, Landes SG, Leitinger N, Hahn YS. NKp46(+) natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 2016; 63 (03) 799-812
  • 233 Heier EC, Meier A, Julich-Haertel H. , et al. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis. J Hepatol 2017; 66 (06) 1241-1250
  • 234 Henning JR, Graffeo CS, Rehman A. , et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 2013; 58 (02) 589-602
  • 235 Handa P, Kowdley KV. Dendritic cells in NASH: friend or foe?. Ann Hepatol 2013; 12 (03) 508-509
  • 236 Brunt EM. Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2010; 7 (04) 195-203
  • 237 Bowen DG, Warren A, Davis T. , et al. Cytokine-dependent bystander hepatitis due to intrahepatic murine CD8 T-cell activation by bone marrow-derived cells. Gastroenterology 2002; 123 (04) 1252-1264
  • 238 Sutti S, Jindal A, Bruzzì S, Locatelli I, Bozzola C, Albano E. Is there a role for adaptive immunity in nonalcoholic steatohepatitis?. World J Hepatol 2015; 7 (13) 1725-1729
  • 239 Sutti S, Jindal A, Locatelli I. , et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 2014; 59 (03) 886-897
  • 240 Ma C, Kesarwala AH, Eggert T. , et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531 (7593): 253-257
  • 241 Avorn J. The $2.6 billion pill—methodologic and policy considerations. N Engl J Med 2015; 372 (20) 1877-1879
  • 242 Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov 2004; 3 (08) 711-715
  • 243 Regev A. Drug-induced liver injury and drug development: industry perspective. Semin Liver Dis 2014; 34 (02) 227-239
  • 244 Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 2016; 14: 10
  • 245 Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH. Timing of new black box warnings and withdrawals for prescription medications. JAMA 2002; 287 (17) 2215-2220
  • 246 Issa NT, Wathieu H, Ojo A, Byers SW, Dakshanamurthy S. Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools. Curr Drug Metab 2017; 18 (06) 556-565
  • 247 Guengerich FP. Cytochromes P450, drugs, and diseases. Mol Interv 2003; 3 (04) 194-204
  • 248 Zhang Z, Tang W. Drug metabolism in drug discovery and development. Acta Pharm Sin B 2018; 8 (05) 721-732
  • 249 Martignoni M, Groothuis GM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2006; 2 (06) 875-894
  • 250 Anderson S, Luffer-Atlas D, Knadler MP. Predicting circulating human metabolites: how good are we?. Chem Res Toxicol 2009; 22 (02) 243-256
  • 251 Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30 (01) 52-63
  • 252 Bale SS, Moore L, Yarmush M, Jindal R. Emerging in vitro liver technologies for drug metabolism and inter-organ interactions. Tissue Eng Part B Rev 2016; 22 (05) 383-394
  • 253 Bale SS, Vernetti L, Senutovitch N. , et al. In vitro platforms for evaluating liver toxicity. Exp Biol Med (Maywood) 2014; 239 (09) 1180-1191
  • 254 Nishimura M, Yoshitsugu H, Yokoi T. , et al. Evaluation of mRNA expression of human drug-metabolizing enzymes and transporters in chimeric mouse with humanized liver. Xenobiotica 2005; 35 (09) 877-890
  • 255 Ohtsuki S, Kawakami H, Inoue T. , et al. Validation of uPA/SCID mouse with humanized liver as a human liver model: protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases by LC-MS/MS. Drug Metab Dispos 2014; 42 (06) 1039-1043
  • 256 Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther 1975; 18 (04) 377-390
  • 257 Nakayama K, Ito S, Suzuki M, Takubo H, Yamazaki H, Nomura Y. Prediction of human pharmacokinetics of typical compounds by a physiologically based method using chimeric mice with humanized liver. Xenobiotica 2019; 49 (04) 404-414
  • 258 Miyamoto M, Iwasaki S, Chisaki I. , et al. Prediction of human pharmacokinetics of long half-life compounds using chimeric mice with humanised liver. Xenobiotica 2019; 49 (12) 1379-1387
  • 259 Miyamoto M, Iwasaki S, Chisaki I, Nakagawa S, Amano N, Hirabayashi H. Comparison of predictability for human pharmacokinetics parameters among monkeys, rats, and chimeric mice with humanised liver. Xenobiotica 2017; 47 (12) 1052-1063
  • 260 Katoh M, Matsui T, Nakajima M. , et al. In vivo induction of human cytochrome P450 enzymes expressed in chimeric mice with humanized liver. Drug Metab Dispos 2005; 33 (06) 754-763
  • 261 Suzuki E, Koyama K, Nakai D, Goda R, Kuga H, Chiba K. Observation of clinically relevant drug interaction in chimeric mice with humanized livers: the case of valproic acid and carbapenem antibiotics. Eur J Drug Metab Pharmacokinet 2017; 42 (06) 965-972
  • 262 Uchida M, Tajima Y, Kakuni M. , et al. Organic anion-transporting polypeptide (OATP)-mediated drug-drug interaction study between rosuvastatin and cyclosporine A in chimeric mice with humanized liver. Drug Metab Dispos 2018; 46 (01) 11-19
  • 263 Foster JR, Lund G, Sapelnikova S, Tyrrell DL, Kneteman NM. Chimeric rodents with humanized liver: bridging the preclinical/clinical trial gap in ADME/toxicity studies. Xenobiotica 2014; 44 (02) 109-122
  • 264 Naritomi Y, Sanoh S, Ohta S. Chimeric mice with humanized liver: application in drug metabolism and pharmacokinetics studies for drug discovery. Drug Metab Pharmacokinet 2018; 33 (01) 31-39
  • 265 Hayashi PH, Chalasani NP. Increasing impact of drug-induced liver injury. Clin Liver Dis (Hoboken) 2015; 5 (06) 136-138
  • 266 Tragni E, Casula M, Pieri V. , et al. Prevalence of the prescription of potentially interacting drugs. PLoS One 2013; 8 (10) e78827
  • 267 Gu Q, Dillon CF, Burt VL. Prescription drug use continues to increase: U.S. prescription drug data for 2007–2008. NCHS Data Brief 2010; (42) 1-8
  • 268 Lammert C, Bjornsson E, Niklasson A, Chalasani N. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events. Hepatology 2010; 51 (02) 615-620
  • 269 Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-S-transferase family of enzymes. Mutat Res 2001; 482 (1-2): 21-26
  • 270 Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37 (01) 41-213
  • 271 Hinson JA, Forkert PG. Phase II enzymes and bioactivation. Can J Physiol Pharmacol 1995; 73 (10) 1407-1413
  • 272 Sanoh S, Yamachika Y, Tamura Y. , et al. Assessment of amiodarone-induced phospholipidosis in chimeric mice with a humanized liver. J Toxicol Sci 2017; 42 (05) 589-596
  • 273 Barnes AJ, Baker DR, Hobby K. , et al. Endogenous and xenobiotic metabolite profiling of liver extracts from SCID and chimeric humanized mice following repeated oral administration of troglitazone. Xenobiotica 2014; 44 (02) 174-185
  • 274 Foster JR, Jacobsen M, Kenna G. , et al. Differential effect of troglitazone on the human bile acid transporters, MRP2 and BSEP, in the PXB hepatic chimeric mouse. Toxicol Pathol 2012; 40 (08) 1106-1116
  • 275 Kakuni M, Morita M, Matsuo K. , et al. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury. Toxicol Lett 2012; 214 (01) 9-18
  • 276 Metushi IG, Sanders C, Lee WM, Uetrecht J. ; Acute Liver Study Group. Detection of anti-isoniazid and anti-cytochrome P450 antibodies in patients with isoniazid-induced liver failure. Hepatology 2014; 59 (03) 1084-1093
  • 277 Jennings JJ, Mandaliya R, Nakshabandi A, Lewis JH. Hepatotoxicity induced by immune checkpoint inhibitors: a comprehensive review including current and alternative management strategies. Expert Opin Drug Metab Toxicol 2019; 15 (03) 231-244
  • 278 García Aparicio AM, Rey JR, Sanz AH, Alvarez JS. Successful treatment with etanercept in a patient with hepatotoxicity closely related to infliximab. Clin Rheumatol 2007; 26 (05) 811-813
  • 279 von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 2017; 17 (06) 352-366
  • 280 Nihira K, Nan-Ya KI, Kakuni M. , et al. Chimeric mice with humanized livers demonstrate human-specific hepatotoxicity caused by a therapeutic antibody against TRAIL-receptor 2/death receptor 5. Toxicol Sci 2019; 167 (01) 190-201
  • 281 Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 1981; 78 (12) 7634-7638
  • 282 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (04) 663-676
  • 283 Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292 (5819): 154-156
  • 284 Gao Y, Zhang X, Zhang L. , et al. Distinct gene expression and epigenetic signatures in hepatocyte-like cells produced by different strategies from the same donor. Stem Cell Reports 2017; 9 (06) 1813-1824
  • 285 Song W, Lu YC, Frankel AS, An D, Schwartz RE, Ma M. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation. Sci Rep 2015; 5: 16884
  • 286 Sakurai F, Mitani S, Yamamoto T. , et al. Human induced-pluripotent stem cell-derived hepatocyte-like cells as an in vitro model of human hepatitis B virus infection. Sci Rep 2017; 7: 45698
  • 287 Kondo Y, Iwao T, Nakamura K. , et al. An efficient method for differentiation of human induced pluripotent stem cells into hepatocyte-like cells retaining drug metabolizing activity. Drug Metab Pharmacokinet 2014; 29 (03) 237-243
  • 288 Nagamoto Y, Takayama K, Tashiro K. , et al. Efficient engraftment of human induced pluripotent stem cell-derived hepatocyte-like cells in uPA/SCID mice by overexpression of FNK, a Bcl-xL mutant gene. Cell Transplant 2015; 24 (06) 1127-1138
  • 289 Carpentier A, Tesfaye A, Chu V. , et al. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J Clin Invest 2014; 124 (11) 4953-4964
  • 290 Katsuda T, Kawamata M, Hagiwara K. , et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 2017; 20 (01) 41-55
  • 291 Katsuda T, Matsuzaki J, Yamaguchi T. , et al. Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. eLife 2019; 8: 8
  • 292 Gramignoli R, Tahan V, Dorko K. , et al. New potential cell source for hepatocyte transplantation: discarded livers from metabolic disease liver transplants. Stem Cell Res (Amst) 2013; 11 (01) 563-573
  • 293 Srinivasan RC, Zabulica M, Hammarstedt C. , et al. A liver-humanized mouse model of carbamoyl phosphate synthetase 1-deficiency. J Inherit Metab Dis 2019; 42 (06) 1054-1063
  • 294 Varghese MJ. Familial hypercholesterolemia: a review. Ann Pediatr Cardiol 2014; 7 (02) 107-117
  • 295 Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993; 92 (02) 883-893
  • 296 Mansoorian M, Kazemi K, Nikeghbalian S. , et al. Liver transplantation as a definitive treatment for familial hypercholesterolemia: a series of 36 cases. Pediatr Transplant 2015; 19 (06) 605-611
  • 297 Marrone G, Shah VH, Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J Hepatol 2016; 65 (03) 608-617
  • 298 Koui Y, Kido T, Ito T. , et al. An in vitro human liver model by iPSC-derived parenchymal and non-parenchymal cells. Stem Cell Reports 2017; 9 (02) 490-498
  • 299 Wilson EM, Bial J, Tarlow B. , et al. Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res (Amst) 2014; 13 (3 Pt A): 404-412
  • 300 Strick-Marchand H, Dusséaux M, Darche S. , et al. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS One 2015; 10 (03) e0119820
  • 301 Brezillon NM, DaSilva L, L'Hôte D. , et al. Rescue of fertility in homozygous mice for the urokinase plasminogen activator transgene by the transplantation of mouse hepatocytes. Cell Transplant 2008; 17 (07) 803-812
  • 302 Bissig KD, Grompe M. Response to “Can ‘humanized’ mice improve drug development in the 21st century?”. Trends Pharmacol Sci 2013; 34 (08) 425
  • 303 Braun RE, Lo D, Pinkert CA. , et al. Infertility in male transgenic mice: disruption of sperm development by HSV-tk expression in postmeiotic germ cells. Biol Reprod 1990; 43 (04) 684-693