J Knee Surg 2021; 34(01): 020-029
DOI: 10.1055/s-0040-1718605
Special Focus Section

Postoperative Management for Articular Cartilage Surgery in the Knee

Cory R. Crecelius
1   Department of Orthopaedic Surgery Physical Therapy, University of Missouri, Columbia, Missouri
2   University of Missouri Joint Preservation Center, Columbia, Missouri
,
Karra J. Van Landuyt
1   Department of Orthopaedic Surgery Physical Therapy, University of Missouri, Columbia, Missouri
,
Robert Schaal
1   Department of Orthopaedic Surgery Physical Therapy, University of Missouri, Columbia, Missouri
› Author Affiliations
Funding None.

Abstract

The postoperative rehabilitation team plays a crucial role in optimizing outcomes after articular cartilage surgery. A comprehensive approach to postoperative physical therapy that considers the type of surgery, location in the knee, concurrent procedures, and patient-specific factors is imperative. While postoperative rehabilitation protocols should be specific to the patient and type of surgery performed and include phased rehabilitation goals and activities, the key principles for postoperative rehabilitation apply across the spectrum of articular cartilage surgeries and patients. These key principles consist of preoperative assessments that include physical, mental, and behavioral components critical to recovery; education and counseling with respect to expectations and compliance; and careful monitoring and adjustments throughout the rehabilitation period based on consistent communication among rehabilitation, surgical, and imaging teams to ensure strict patient compliance with restrictions, activities, and timelines to optimize functional outcomes after surgery.



Publication History

Received: 05 June 2020

Accepted: 25 August 2020

Article published online:
27 October 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1 (06) 461-468
  • 2 Steadman JR, Rodkey WG, Briggs KK. Microfracture: its history and experience of the developing surgeon. Cartilage 2010; 1 (02) 78-86
  • 3 Rucinski K, Cook JL, Crecelius CR, Stucky R, Stannard JP. Effects of compliance with procedure-specific postoperative rehabilitation protocols on initial outcomes after osteochondral and meniscal allograft transplantation in the knee. Orthop J Sports Med 2019; 7 (11) 2325967119884291
  • 4 Hayden R, Rucinski K, Crecelius CR, Stucky R, Stannard JP, Cook JL. Outcomes associated with behavioral evaluation and counseling for patients undergoing orthopaedic surgery: a systematic review. J Orthop 2020; 21: 178-182
  • 5 Andrish JT. Biomechanics of the patellofemoral joint. Oper Tech Sports Med 2015; 23 (02) 62-67
  • 6 Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Della Villa S. Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther 2012; 42 (03) 254-273
  • 7 Hambly K, Bobic V, Wondrasch B, Van Assche D, Marlovits S. Autologous chondrocyte implantation postoperative care and rehabilitation: science and practice. Am J Sports Med 2006; 34 (06) 1020-1038
  • 8 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 2007; 14 (03) 177-182
  • 9 Frank RM, Cotter EJ, Hannon CP, Harrast JJ, Cole BJ. Cartilage restoration surgery: Incidence rates, complications, and trends as reported by the American Board of Orthopaedic Surgery Part II candidates. Arthroscopy 2019; 35 (01) 171-178
  • 10 Zitsch BP, Stannard JP, Worley JR, Cook JL, Leary EV. Patient-reported outcomes for large bipolar osteochondral allograft transplantation in combination with realignment osteotomies for the knee. J Knee Surg 2020; 5 DOI: 10.1055/s-0040-1710361.
  • 11 Bekkers JEJ, Inklaar M, Saris DBF. Treatment selection in articular cartilage lesions of the knee: a systematic review. Am J Sports Med 2009; 37 (Suppl. 01) 148S-155S
  • 12 Jaiswal PK, Bentley G, Carrington RWJ, Skinner JA, Briggs TWR. The adverse effect of elevated body mass index on outcome after autologous chondrocyte implantation. J Bone Joint Surg Br 2012; 94 (10) 1377-1381
  • 13 Stannard JP, Cook JL. Prospective assessment of outcomes after primary unipolar, multisurface, and bipolar osteochondral allograft transplantations in the knee: a comparison of 2 preservation methods. Am J Sports Med 2020; 48 (06) 1356-1364
  • 14 Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R. Pain and effusion and quadriceps activation and strength. J Athl Train 2013; 48 (02) 186-191
  • 15 Rutherford DJ, Hubley-Kozey CL, Stanish WD. Knee effusion affects knee mechanics and muscle activity during gait in individuals with knee osteoarthritis. Osteoarthritis Cartilage 2012; 20 (09) 974-981
  • 16 Vanwanseele B, Lucchinetti E, Stüssi E. The effects of immobilization on the characteristics of articular cartilage: current concepts and future directions. Osteoarthritis Cartilage 2002; 10 (05) 408-419
  • 17 Behrens F, Kraft EL, Oegema Jr TR. Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J Orthop Res 1989; 7 (03) 335-343
  • 18 Hauger AV, Reiman MP, Bjordal JM, Sheets C, Ledbetter L, Goode AP. Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surg Sports Traumatol Arthrosc 2018; 26 (02) 399-410
  • 19 Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000; 32 (12) 2035-2039
  • 20 Baker BS, Stannard MS, Duren DL, Cook JL, Stannard JP. Does blood flow restriction therapy in patients older than age 50 result in muscle hypertrophy, increased strength, or greater physical function? A systematic review. Clin Orthop Relat Res 2020; 478 (03) 593-606
  • 21 Abe T, Yasuda T, Midorikawa T. et al. Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily ‘KAATSU’ resistance training. Int J KAATSU Train Res 2005; 1 (01) 6-12
  • 22 Anderson DE, Johnstone B. Dynamic Mechanical compression of chondrocytes for tissue engineering: a critical review. Front Bioeng Biotechnol 2017; 5: 76
  • 23 Lane Smith R, Trindade MC, Ikenoue T. et al. Effects of shear stress on articular chondrocyte metabolism. Biorheology 2000; 37 (1-2): 95-107
  • 24 Elder SH, Kimura JH, Soslowsky LJ, Lavagnino M, Goldstein SA. Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res 2000; 18 (01) 78-86
  • 25 Arokoski JP, Jurvelin JS, Väätäinen U, Helminen HJ. Normal and pathological adaptations of articular cartilage to joint loading. Scand J Med Sci Sports 2000; 10 (04) 186-198
  • 26 Nisell R, Ericson M. Patellar forces during isokinetic knee extension. Clin Biomech (Bristol, Avon) 1992; 7 (02) 104-108
  • 27 Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012; 8 (04) 114-124
  • 28 Shimizu T, Videman T, Shimazaki K, Mooney V. Experimental study on the repair of full thickness articular cartilage defects: effects of varying periods of continuous passive motion, cage activity, and immobilization. J Orthop Res 1987; 5 (02) 187-197
  • 29 Yen Y-M, Cascio B, O'Brien L, Stalzer S, Millett PJ, Steadman JR. Treatment of osteoarthritis of the knee with microfracture and rehabilitation. Med Sci Sports Exerc 2008; 40 (02) 200-205
  • 30 Irrgang JJ, Pezzullo D. Rehabilitation following surgical procedures to address articular cartilage lesions in the knee. J Orthop Sports Phys Ther 1998; 28 (04) 232-240
  • 31 Wilk KE, Macrina LC, Reinold MM. Rehabilitation following microfracture of the knee. Cartilage 2010; 1 (02) 96-107
  • 32 Frisbie DD, Oxford JT, Southwood L. et al. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res 2003; (407) 215-227
  • 33 Breinan HA, Minas T, Barone L. et al. Histological evaluation of the course of healing of canine articular cartilage defects treated with cultured autologous chondrocytes. Tissue Eng 1998; 4 (01) 101-113
  • 34 Hurst J, Steadman JR. Rehabilitation following microfracture for chondral injury in the knee-ClinicalKey. Accessed May 12, 2020 at: https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0278591909001021?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0278591909001021%3Fshowall%3Dtrue&referrer=https:%2F%2Fwww.ncbi.nlm.nih.gov%2F
  • 35 Mithoefer K, Gill TJ, Cole BJ, Williams RJ, Mandelbaum BR. Clinical outcome and return to competition after microfracture in the athlete's knee: an evidence-based systematic review. Cartilage 2010; 1 (02) 113-120
  • 36 Kon E, Roffi A, Filardo G, Tesei G, Marcacci M. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 2015; 31 (04) 767-775
  • 37 Albright JC, Daoud AK. Microfracture and microfracture plus. Clin Sports Med 2017; 36 (03) 501-507
  • 38 Fortier LA, Cole BJ, McIlwraith CW. Science and animal models of marrow stimulation for cartilage repair. J Knee Surg 2012; 25 (01) 3-8
  • 39 Hirschmüller A, Baur H, Braun S, Kreuz PC, Südkamp NP, Niemeyer P. Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med 2011; 39 (12) 2686-2696
  • 40 Karnes JM, Harris JD, Griesser MJ, Flanigan DC. Continuous passive motion following cartilage surgery: does a common protocol exist?. Phys Sportsmed 2013; 41 (04) 53-63
  • 41 van Grinsven S, van Cingel REH, Holla CJM, van Loon CJM. Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2010; 18 (08) 1128-1144
  • 42 Nho SJ, Pensak MJ, Seigerman DA, Cole BJ. Rehabilitation after autologous chondrocyte implantation in athletes. Clin Sports Med 2010; 29 (02) 267-282 , viii
  • 43 Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL. Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther 2006; 36 (10) 774-794
  • 44 Neptune RR, Kautz SA. Knee joint loading in forward versus backward pedaling: implications for rehabilitation strategies. Clin Biomech (Bristol, Avon) 2000; 15 (07) 528-535
  • 45 Ebert JR, Fallon M, Ackland TR, Janes GC, Wood DJ. Minimum 10-year clinical and radiological outcomes of a randomized controlled trial evaluating 2 different approaches to full weightbearing after matrix-induced autologous chondrocyte implantation. Am J Sports Med 2020; 48 (01) 133-142
  • 46 Kraeutler MJ, Belk JW, Carver TJ, McCarty EC. Is delayed weightbearing after matrix-associated autologous chondrocyte implantation in the knee associated with better outcomes? A systematic review of randomized controlled trials. Orthop J Sports Med 2018; 6 (05) 2325967118770986
  • 47 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
  • 48 Edwards PK, Ackland T, Ebert JR. Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther 2014; 44 (02) 102-119
  • 49 Gillogly SD, Myers TH, Reinold MM. Treatment of full-thickness chondral defects in the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 2006; 36 (10) 751-764
  • 50 Whiteside RA, Bryant JT, Jakob RP, Mainil-Varlet P, Wyss UP. Short-term load bearing capacity of osteochondral autografts implanted by the mosaicplasty technique: an in vitro porcine model. J Biomech 2003; 36 (08) 1203-1208
  • 51 Nam EK, Makhsous M, Koh J, Bowen M, Nuber G, Zhang LQ. Biomechanical and histological evaluation of osteochondral transplantation in a rabbit model. Am J Sports Med 2004; 32 (02) 308-316
  • 52 Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 2009; 37 (Suppl. 01) 167S-176S
  • 53 Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams III RJ. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 2017; 25 (10) 3186-3196
  • 54 Campbell AB, Pineda M, Harris JD, Flanigan DC. Return to sport after articular cartilage repair in athletes' knees: a systematic review. Arthroscopy 2016; 32 (04) 651-68.e1
  • 55 Werner BC, Cosgrove CT, Gilmore CJ. et al. Accelerated return to sport after osteochondral autograft plug transfer. Orthop J Sports Med 2017; 5 (04) 2325967117702418
  • 56 Khan SN, Cammisa Jr FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005; 13 (01) 77-86
  • 57 Demange M, Gomoll AH. The use of osteochondral allografts in the management of cartilage defects. Curr Rev Musculoskelet Med 2012; 5 (03) 229-235
  • 58 Lattermann C. Osteochondral Allografts: State of the Art-ClinicalKey. Accessed May 15, 2020 at: https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0278591908000860?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0278591908000860%3Fshowall%3Dtrue&referrer=https:%2F%2Fwww.ncbi.nlm.nih.gov%2F
  • 59 Sherman SL, Thyssen E, Nuelle CW. Osteochondral autologous transplantation. Clin Sports Med 2017; 36 (03) 489-500
  • 60 Familiari F, Cinque ME, Chahla J. et al. Clinical outcomes and failure rates of osteochondral allograft transplantation in the knee: a systematic review. Am J Sports Med 2018; 46 (14) 3541-3549