Dtsch Med Wochenschr 2015; 140(09): 650-656
DOI: 10.1055/s-0041-101365
Dossier
Herz und Diabetes
© Georg Thieme Verlag KG Stuttgart · New York

Besonderheiten der blutzuckersenkenden Therapie bei herzkranken Patienten

Glucose-lowering therapy in patients with cardiac comorbidities
Juris J. Meier
1   Abteilung für Diabetologie, Universitätsklinikum St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum
› Author Affiliations
Further Information

Publication History

Publication Date:
29 April 2015 (online)

Zusammenfassung

Das Risiko für kardiovaskuläre Ereignisse, ebenso wie für eine Herzinsuffizienz oder Herzrhythmusstörungen, ist bei Patienten mit Diabetes deutlich erhöht. Wenngleich chronisch erhöhte HbA1c-Werte mit einer gesteigerten kardiovaskulären Ereignisrate assoziiert sind, führt eine aggressive blutzuckersenkende Therapie jedoch nicht zwangsläufig zu einer Prognoseverbesserung. So müssen Therapie-bedinge Nebenwirkungen wie Hypoglykämie und Gewichtszunahme sorgfältig gegen den Nutzen der Blutzuckersenkung abgewogen werden. Ferner sollten spezifische Präparate-bezogene Aspekte berücksichtigt werden: So ist Pioglitazon bei Patienten mit Herzinsuffizienz kontraindiziert, und auch für die DPP-4 Hemmer gibt es Hinweise auf eine gesteigerte Herzinsuffizienz-Rate unter Therapie. Bei der Therapie mit GLP-1 Analoga sollte auf einen Anstieg der Herzfrequenz geachtet werden. Hinweise auf eine Reduktion kardiovaskulärer Endpunkte bei Patienten mit Diabetes finden sich nur für Metformin. Für Insulin und Sulphonylharnstoffe haben die vorliegenden kardiovaskulären Endpunktstudien neutrale Ergebnisse erbracht, für GLP-1 Analoga und SGLT-2 Hemmer liegen derartige Endpunktstudien noch nicht vor. Insgesamt sollten die verschiedenartigen spezifischen Effekte im Herz-Kreislaufsystem sowie das Hypoglykämierisiko bei der Auswahl einer blutzuckersenkenden Therapie bei herzkranken Patienten bedacht werden.

Abstract

The risk for cardiovascular events, congestive heart failure and cardiac arrhythmia is significantly increased in patients with diabetes. Although poor glycaemic control has been associated with an increased cardiovascular event rate, aggressive glucose-lowering strategies have failed to improve cardiovascular endpoints or mortality. Therefore, treatment-associated adverse effects, especially hypoglycaemia and weight gain, must be carefully outbalanced against the potential benefits of better glycaemic control. Furthermore, certain drug-specific aspects must be considered: Pioglitazone is contraindicated in patients with heart failure, and DPP-4 inhibitors have recently been associated with an increased heart failure rate. Heart rate may increase during treatment with GLP-1 analogues. Only with metformin a reduction in cardiovascular endpoint has been demonstrated in patients with diabetes. Insulin and sulphonylureas have yielded neutral results in the available endpoint trials. Endpoint studies with GLP-1 analogues or SGLT-2 inhibitors have not yet been completed. These various drug-specific actions in the cardiovascular system need to be born in mind for the choice of the optimal glucose-lowering strategy in patients with cardiac comorbidities.

 
  • Literaturverzeichnis

  • 1 Haffner SM. Coronary heart disease in patients with diabetes. N Engl J Med 2000; 342: 1040-1042
  • 2 Gregg EW, Li Y, Wang J et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med 2014; 370: 1514-1523
  • 3 Stratton IM, Adler AI, Neil HA et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405-412
  • 4 Inzucchi SE, Bergenstal RM, Buse JB et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2012; 55: 1577-1596
  • 5 Patel A, MacMahon S, Chalmers J et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572
  • 6 Gerstein HC, Miller ME, Byington RP et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-2559
  • 7 Duckworth W, Abraira C, Moritz T et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360: 129-139
  • 8 Leung AA, Eurich DT, Lamb DA et al. Risk of heart failure in patients with recent-onset type 2 diabetes: population-based cohort study. J Cardiac Fail 2009; 15: 152-157
  • 9 Gitt AK, Halle M, Hanefeld M et al. Should antidiabetic treatment of type 2 diabetes in patients with heart failure differ from that in patients without?. Eur J Heart Fail 2012; 14: 1389-1400
  • 10 Halle M, Gitt AK, Hanefeld M et al. [Diabetes and heart failure: a practically oriented critical appraisal]. Dtsch Med Wochenschr 2012; 137: 437-441
  • 11 Huxley RR, Filion KB, Konety S, Alonso A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Card 2011; 108: 56-62
  • 12 Kuehl M, Stevens MJ. Cardiovascular autonomic neuropathies as complications of diabetes mellitus. Nature reviews Endocrinology 2012; 8: 405-416
  • 13 Bundesärztekammer, Kassenärztliche Bundesvereinigung, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften. Nationale VersorgungsLeitlinie Therapie des Typ-2-Diabetes – Langfassung 2013. http://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Leitlinien/Evidenzbasierte_Leitlinien/NVL_Typ-2_Therapie-lang_Apr_2014.pdf Letzter Zugriff 26.3.2015
  • 14 Reaven PD, Moritz TE, Schwenke DC et al. Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes 2009; 58: 2642-2648
  • 15 Schernthaner G. Diabetes and Cardiovascular Disease: Is intensive glucose control beneficial or deadly? Lessons from ACCORD, ADVANCE, VADT, UKPDS, PROactive, and NICE-SUGAR. Wien Med Wochenschr 2010; 160: 8-19
  • 16 Di Loreto C, Fanelli C, Lucidi P et al. Make your diabetic patients walk: long-term impact of different amounts of physical activity on type 2 diabetes. Diabetes Care 2005; 28: 1295-1302
  • 17 Yates T, Haffner SM, Schulte PJ et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. Lancet 2014; 383: 1059-1066
  • 18 Wing RR, Bolin P, Brancati FL et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 19 Estruch R, Ros E, Salas-Salvado J et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013; 368: 1279-1290
  • 20 UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854-865
  • 21 Holstein A, Stumvoll M. Contraindications can damage your health – is metformin a case in point?. Diabetologia 2005; 48: 2454-2459
  • 22 Eurich DT, Majumdar SR, McAlister FA et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care 2005; 28: 2345-2351
  • 23 Eurich DT, Weir DL, Majumdar SR et al. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circulation Heart failure 2013; 6: 395-402
  • 24 Breuer TG, Meier JJ. Inpatient treatment of type 2 diabetes. Deutsches Arzteblatt international 2012; 109: 466-474
  • 25 Meier JJ, Gallwitz B, Schmidt WE et al. Is impairment of ischaemic preconditioning by sulfonylurea drugs clinically important?. Heart 2004; 90: 9-12
  • 26 Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970; 19, Suppl: 789-830
  • 27 UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837-853
  • 28 Cleveland Jr JC, Meldrum DR, Cain BS, Banerjee A, Harken AH. Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 1997; 96: 29-32
  • 29 Meier JJ, Deifuss S, Klamann A et al. Influence of an antidiabetic treatment with sulfonylurea drugs on long-term survival after acute myocardial infarction in patients with type 2 diabetes. The LAngendreer Myocardial infarction and Blood glucose in Diabetic patients Assessment (LAMBDA). Exp Clin Endocrinol Diabetes 2003; 111: 344-350
  • 30 Forst T, Hanefeld M, Jacob S et al. Association of sulphonylurea treatment with all-cause and cardiovascular mortality: a systematic review and meta-analysis of observational studies. Diab Vasc Dis Res 2013; 10: 302-314
  • 31 Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care 2010; 33: 1389-1394
  • 32 Chow E, Bernjak A, Williams S et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 2014; 63: 1738-1747
  • 33 Holman RR, Haffner SM, McMurray JJ et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med 2010; 362: 1463-1476
  • 34 Hanefeld M. Cardiovascular benefits and safety profile of acarbose therapy in prediabetes and established type 2 diabetes. Cardiovasc Diabetol 2007; 6: 20
  • 35 Hanefeld M. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complications 1998; 12: 228-237
  • 36 Chiasson JL, Josse RG, Gomis R et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003; 290: 486-494
  • 37 Ajjan RA, Grant PJ. Cardiovascular disease prevention in patients with type 2 diabetes: The role of oral anti-diabetic agents. Diab Vasc Dis Res 2006; 3: 147-158
  • 38 Gilling L, Suwattee P, DeSouza C et al. Effects of the thiazolidinediones on cardiovascular risk factors. Am J Cardiovasc Drugs 2002; 2: 149-156
  • 39 Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457-2471
  • 40 Dormandy JA, Charbonnel B, Eckland DJ et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279-1289
  • 41 Chaggar PS, Malkin CJ, Shaw SM et al. Neuroendocrine effects on the heart and targets for therapeutic manipulation in heart failure. Cardiovasc Ther 2009; 27: 187-193
  • 42 Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev 2012; 33: 187-215
  • 43 Deacon CF, Marx N. Potential cardiovascular effects of incretin-based therapies. Expert Rev Cardiovasc Ther 2012; 10: 337-351
  • 44 Hocher B, Sharkovska Y, Mark M et al. The novel DPP-4 inhibitors linagliptin and BI 14 361 reduce infarct size after myocardial ischemia / reperfusion in rats. Int J Cardiol 2013; 167: 87-93
  • 45 Chang G, Zhang P, Ye L et al. Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia / reperfusion rat model. Eur J Pharmacol 2013; 718: 105-113
  • 46 Monami M, Ahren B, Dicembrini I et al. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013; 15: 112-120
  • 47 Scirica BM, Bhatt DL, Braunwald E et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369: 1317-1326
  • 48 White WB, Cannon CP, Heller SR et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369: 1327-1335
  • 49 Nikolaidis LA, Mankad S, Sokos GG et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109: 962-965
  • 50 Read PA, Khan FZ, Heck PM et al. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovas Imaging 2010; 3: 195-201
  • 51 Timmers L, Henriques JP, de Kleijn DP et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009; 53: 501-510
  • 52 Ussher JR, Baggio LL, Campbell JE et al. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol Metab 2014; 3: 507-517
  • 53 Pyke C, Heller RS, Kirk RK et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 2014; 155: 1280-1290
  • 54 Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114: 1788-1803
  • 55 Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8: 728-742
  • 56 Fonseca VA, Devries JH, Henry RR et al. Reductions in systolic blood pressure with liraglutide in patients with type 2 diabetes: insights from a patient-level pooled analysis of six randomized clinical trials. J Diabetes Complications 2014; 28: 399-405
  • 57 Lovshin JA, Barnie A, DeAlmeida A et al. Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic Peptide in hypertensive subjects with type 2 diabetes. Diabetes Care 2015; 38: 132-139
  • 58 Marso SP, Lindsey JB, Stolker JM et al. Cardiovascular safety of liraglutide assessed in a patient-level pooled analysis of phase 2: 3 liraglutide clinical development studies. Diab Vasc Dis Res 2011; 8: 237-240
  • 59 Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 2011; 32: 515-531
  • 60 Lamos EM, Younk LM, Davis SN. Canagliflozin , an inhibitor of sodium-glucose cotransporter 2, for the treatment of type 2 diabetes mellitus. Expert Opin Drug Metab Toxicol 2013; 9: 763-775
  • 61 Ridderstrale M, Andersen KR, Zeller C et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2014; 2: 691-700
  • 62 Whaley JM, Tirmenstein M, Reilly TP et al. Targeting the kidney and glucose excretion with dapagliflozin: preclinical and clinical evidence for SGLT2 inhibition as a new option for treatment of type 2 diabetes mellitus. Diabetes Metab Syndr Obes 2012; 5: 135-148
  • 63 Broder HJ, Nesto RW. Glucose, insulin, and potassium for metabolic support in acute myocardial infarction: is the jury still out?. Rev Cardiovas Med 2006; 7 (Suppl. 02) S44-50
  • 64 Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ 1997; 314: 1512-1515
  • 65 Malmberg K, Ryden L, Hamsten A et al. Effects of insulin treatment on cause-specific anoe-year mortality and morbidity in diabetic patients with acute myocardial infarction: DIGAMI study group: Diabetes Insulin-Glucose in Acute Myocardial Infarction. Eur Heart J 1996; 17: 1337-1344
  • 66 Malmberg K, Ryden L, Wedel H et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 2005; 26: 650-661
  • 67 Gerstein HC, Bosch J, Dagenais GR et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 2012; 367: 319-328
  • 68 Holden SE, Jenkins-Jones S, Morgan CL et al. Glucose-lowering with exogenous insulin monotherapy in type 2 diabetes: dose association with all-cause mortality, cardiovascular events and cancer. Diabetes Obes Metab 2015; 17: 350-362