Thorac Cardiovasc Surg 2022; 70(06): 493-504
DOI: 10.1055/s-0041-1731823
Review Article

Ventricular Assist Device Driveline Infections: A Systematic Review

Kristina Krzelj
1   Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
,
2   Division of Health Studies, Department of Cardiac Surgery, University of Split, University Hospital Center Zagreb, Zagreb, Croatia
,
Hrvoje Gasparovic
1   Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
3   School of Medicine, University of Zagreb, Zagreb, Croatia
,
Bojan Biocina
1   Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
3   School of Medicine, University of Zagreb, Zagreb, Croatia
,
David McGiffin
4   Department of Cardiothoracic Surgery and Transplantation, Alfred Hospital, Melbourne, Victoria, Australia
5   Monash University, Clayton, Victoria, Australia
› Author Affiliations

Abstract

Infection is the most common complication in patients undergoing ventricular assist device (VAD) implantation. Driveline exit site (DLES) infection is the most frequent VAD infection and is a significant cause of adverse events in VAD patients, contributing to morbidity, even mortality, and repetitive hospital readmissions. There are many risk factors for driveline infection (DLI) including younger age, smaller constitution of patients, obesity, exposed velour at the DLES, longer duration of device support, lower cardiac index, higher heart failure score, DLES trauma, and comorbidities such as diabetes mellitus, chronic kidney disease, and depression. The incidence of DLI depends also on the device type. Numerous measures to prevent DLI currently exist. Some of them are proven, whereas the others remain controversial. Current recommendations on DLES care and DLI management are predominantly based on expert consensus and clinical experience of the certain centers. However, careful and uniform DLES care including obligatory driveline immobilization, previously prepared sterile dressing change kits, and continuous patient education are probably crucial for prevention of DLI. Diagnosis and treatment of DLI are often challenging because of certain immunological alterations in VAD patients and microbial biofilm formation on the driveline surface areas. Although there are many conservative and surgical methods described in the DLI treatment, the only possible permanent solution for DLI resolution in VAD patients is heart transplantation. This systematic review brings a comprehensive synthesis of recent data on the prevention, diagnostic workup, and conservative and surgical management of DLI in VAD patients.

Supplementary Material



Publication History

Received: 20 January 2021

Accepted: 26 May 2021

Article published online:
14 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rose EA, Gelijns AC, Moskowitz AJ. et al; Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001; 345 (20) 1435-1443
  • 2 Kirklin JK, Pagani FD, Kormos RL. et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant 2017; 36 (10) 1080-1086
  • 3 Kormos RL, Cowger J, Pagani FD. et al. The Society of Thoracic Surgeons INTERMACS database annual report: evolving indications, outcomes, and scientific partnerships. J Heart Lung Transplant 2019; 38 (02) 114-126
  • 4 Kusne S, Mooney M, Danziger-Isakov L. et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J Heart Lung Transplant 2017; 36 (10) 1137-1153
  • 5 Kirklin JK, Naftel DC, Pagani FD. et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant 2015; 34 (12) 1495-1504
  • 6 Gosev I, Kiernan MS, Eckman P. et al; Evolving Mechanical Support Research Group (EMERG) Investigators. Long-term survival in patients receiving a continuous-flow left ventricular assist device. Ann Thorac Surg 2018; 105 (03) 696-701
  • 7 Trachtenberg BH, Cordero-Reyes A, Elias B, Loebe M. A review of infections in patients with left ventricular assist devices: prevention, diagnosis and management. Methodist DeBakey Cardiovasc J 2015; 11 (01) 28-32
  • 8 Raju S, MacIver J, Foroutan F, Alba C, Billia F, Rao V. Long-term use of left ventricular assist devices: a report on clinical outcomes. Can J Surg 2017; 60 (04) 236-246
  • 9 de By TM, Mohacsi P, Gummert J. et al; EUROMACS members. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): first annual report. Eur J Cardiothorac Surg 2015; 47 (05) 770-776 , discussion 776–777
  • 10 Hannan MM, Xie R, Cowger J. et al. Epidemiology of infection in mechanical circulatory support: a global analysis from the ISHLT Mechanically Assisted Circulatory Support Registry. J Heart Lung Transplant 2019; 38 (04) 364-373
  • 11 Shah P, Birk SE, Cooper LB. et al. Stroke and death risk in ventricular assist device patients varies by ISHLT infection category: an INTERMACS analysis. J Heart Lung Transplant 2019; 38 (07) 721-730
  • 12 Belz S, Fisquet S, Ahuja A, Hay K, Lavana J. Incidence of infection and antimicrobial consumption in ventricular assist device (VAD) recipients at the Prince Charles Hospital (TPCH): a retrospective analysis. Heart Lung Circ 2020; 29 (08) 1234-1240
  • 13 Nienaber JJC, Kusne S, Riaz T. et al; Mayo Cardiovascular Infections Study Group. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis 2013; 57 (10) 1438-1448
  • 14 Schloglhofer T, Michalovics P, Riebandt J. et al. Left ventricular assist device driveline infections in three contemporary devices. Artif Organs 2020; 0–3 DOI: 10.1111/aor.13843.
  • 15 Gordon RJ, Weinberg AD, Pagani FD. et al; Ventricular Assist Device Infection Study Group. Prospective, multicenter study of ventricular assist device infections. Circulation 2013; 127 (06) 691-702
  • 16 Rogers JG, Pagani FD, Tatooles AJ. et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 2017; 376 (05) 451-460
  • 17 Zinoviev R, Lippincott CK, Keller SC, Gilotra NA. In full flow: left ventricular assist device infections in the modern era. Open Forum Infect Dis 2020; 7 (05) a124
  • 18 Topkara VK, Kondareddy S, Malik F. et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg 2010; 90 (04) 1270-1277
  • 19 Sharma V, Deo SV, Stulak JM. et al. Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg 2012; 94 (05) 1381-1386
  • 20 Anselmi A, Galand V, Vincentelli A. et al. Current results of left ventricular assist device therapy in France: the ASSIST-ICD registry. Eur J Cardiothorac Surg 2020; 58 (01) 112-120
  • 21 Liberati A, Altman DG, Tetzlaff J. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009; 62 (10) e1-e34
  • 22 Hannan MM, Husain S, Mattner F. et al; International Society for Heart and Lung Transplantation. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant 2011; 30 (04) 375-384
  • 23 Kirklin JK, Naftel DC, Stevenson LW. et al. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 2008; 27 (10) 1065-1072
  • 24 Monkowski DH, Axelrod P, Fekete T, Hollander T, Furukawa S, Samuel R. Infections associated with ventricular assist devices: epidemiology and effect on prognosis after transplantation. Transpl Infect Dis 2007; 9 (02) 114-120
  • 25 Bomholt T, Moser C, Sander K. et al. Driveline infections in patients supported with a HeartMate II: incidence, aetiology and outcome. Scand Cardiovasc J 2011; 45 (05) 273-278
  • 26 Yoshioka D, Okazaki S, Toda K. et al. Prevalence of cerebral microbleeds in patients with continuous-flow left ventricular assist devices. J Am Heart Assoc 2017; 6 (09) e005955
  • 27 Zierer A, Melby SJ, Voeller RK. et al. Late-onset driveline infections: the Achilles' heel of prolonged left ventricular assist device support. Ann Thorac Surg 2007; 84 (02) 515-520
  • 28 Feldman D, Pamboukian SV, Teuteberg JJ. et al; International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant 2013; 32 (02) 157-187
  • 29 Baronetto A, Centofanti P, Attisani M. et al. A simple device to secure ventricular assist device driveline and prevent exit-site infection. Interact Cardiovasc Thorac Surg 2014; 18 (04) 415-417
  • 30 Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358 (9276): 135-138
  • 31 Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8 (09) 623-633
  • 32 Qu Y, McGiffin D, Kure C. et al. Biofilm formation and migration on ventricular assist device drivelines. J Thorac Cardiovasc Surg 2020; 159 (02) 491-502.e2 , e492
  • 33 Koval CE, Stosor V. AST ID Community of Practice. Ventricular assist device-related infections and solid organ transplantation-guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33 (09) e13552
  • 34 Qu Y, McGiffin D, Hayward C. et al. Characterization of infected, explanted ventricular assist device drivelines: the role of biofilms and microgaps in the driveline tunnel. J Heart Lung Transplant 2020;•:S1053-2498(20)31666-1
  • 35 Toba FA, Akashi H, Arrecubieta C, Lowy FD. Role of biofilm in Staphylococcus aureus and Staphylococcus epidermidis ventricular assist device driveline infections. J Thorac Cardiovasc Surg 2011; 141 (05) 1259-1264
  • 36 Rahal A, Ruch Y, Meyer N. et al. Left ventricular assist device-associated infections: incidence and risk factors. J Thorac Dis 2020; 12 (05) 2654-2662
  • 37 John R, Aaronson KD, Pae WE. et al; HeartWare Bridge to Transplant ADVANCE Trial Investigators. Drive-line infections and sepsis in patients receiving the HVAD system as a left ventricular assist device. J Heart Lung Transplant 2014; 33 (10) 1066-1073
  • 38 Koval CE, Thuita L, Moazami N, Blackstone E. Evolution and impact of drive-line infection in a large cohort of continuous-flow ventricular assist device recipients. J Heart Lung Transplant 2014; 33 (11) 1164-1172
  • 39 Blanco-Guzman MO, Wang X, Vader JM, Olsen MA, Dubberke ER. Epidemiology of left ventricular assist device infections: findings from a large non-registry cohort. Clin Infect Dis 2021; 72 (02) 190-197
  • 40 Nunez Breton JD, Hernandez G, Simkins J, Chaparro SV. Mycobacterium abscessus left ventricle assist device driveline infections: an emerging pathogen?. Transpl Infect Dis 2018; 20 (05) e12957
  • 41 Roest S, Bax HI, Verkaik NJ. et al. Mycobacterium chelonae, an ‘atypical’ cause of an LVAD driveline infection. Int J Infect Dis 2020; 92: 127-129
  • 42 Lehnert AL, Hart A, Branam S, Brouse S, Guglin M. Left ventricular assist device related infections: does the time of onset matter?. J Heart Lung Transplant 2016; 35 DOI: 10.1016/j.healun.2016.01.724.
  • 43 Goldstein DJ, Naftel D, Holman W. et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant 2012; 31 (11) 1151-1157
  • 44 Zafar F, Villa CR, Morales DL. et al. Does small size matter with continuous flow devices?: Analysis of the INTERMACS database of adults with BSA ≤1.5 m2 . JACC Heart Fail 2017; 5 (02) 123-131
  • 45 Raymond AL, Kfoury AG, Bishop CJ. et al. Obesity and left ventricular assist device driveline exit site infection. ASAIO J 2010; 56 (01) 57-60
  • 46 Akay MH, Nathan SS, Radovancevic R. et al. Obesity is associated with driveline infection of left ventricular assist devices. ASAIO J 2019; 65 (07) 678-682
  • 47 McCandless SP, Ledford ID, Mason NO. et al. Comparing velour versus silicone interfaces at the driveline exit site of HeartMate II devices: infection rates, histopathology, and ultrastructural aspects. Cardiovasc Pathol 2015; 24 (02) 71-75
  • 48 Pavlovic NV, Randell T, Madeira T, Hsu S, Zinoviev R, Abshire M. Risk of left ventricular assist device driveline infection: a systematic literature review. Heart Lung 2019; 48 (02) 90-104
  • 49 Dean D, Kallel F, Ewald GA. et al; SSI Registry Investigators. Reduction in driveline infection rates: results from the HeartMate II Multicenter Driveline Silicone Skin Interface (SSI) Registry. J Heart Lung Transplant 2015; 34 (06) 781-789
  • 50 Emani S. Complications of durable left ventricular assist device therapy. Crit Care Clin 2018; 34 (03) 465-477
  • 51 Angud M. Left ventricular assist device driveline infections: the Achilles' heel of destination therapy. AACN Adv Crit Care 2015; 26 (04) 300-305
  • 52 Schaffer JM, Allen JG, Weiss ES. et al. Infectious complications after pulsatile-flow and continuous-flow left ventricular assist device implantation. J Heart Lung Transplant 2011; 30 (02) 164-174
  • 53 Imamura T, Kinugawa K, Nitta D. et al. Readmission due to driveline infection can be predicted by new score by using serum albumin and body mass index during long-term left ventricular assist device support. J Artif Organs 2015; 18 (02) 120-127
  • 54 Martin BJ, Luc JGY, Maruyama M. et al. Driveline site is not a predictor of infection after ventricular assist device implantation. ASAIO J 2018; 64 (05) 616-622
  • 55 Imamura T, Murasawa T, Kawasaki H. Correlation between driveline features and driveline infection in left ventricular assist device selection. J Artif Organs 2017; 20 (01) 34-41
  • 56 Bernhardt AM, Schlöglhofer T, Lauenroth V. et al; Driveline Expert STagINg and carE DESTINE study group, a Ventricular Assist Device Driveline Infection Study Group. Prevention and early treatment of driveline infections in ventricular assist device patients - the DESTINE staging proposal and the first standard of care protocol. J Crit Care 2020; 56: 106-112
  • 57 Mehra MR, Uriel N, Naka Y. et al; MOMENTUM 3 Investigators. A fully magnetically levitated left ventricular assist device - final report. N Engl J Med 2019; 380 (17) 1618-1627
  • 58 Siegenthaler MP, Martin J, Pernice K. et al. The Jarvik 2000 is associated with less infections than the HeartMate left ventricular assist device. Eur J Cardiothorac Surg 2003; 23 (05) 748-754 , discussion 754–755
  • 59 Bejko J, Toto F, Gregori D, Gerosa G, Bottio T. Left ventricle assist devices and driveline's infection incidence: a single-centre experience. J Artif Organs 2018; 21 (01) 52-60
  • 60 Zucchetta F, Tarzia V, Bottio T, Gerosa G. The Jarvik-2000 ventricular assist device implantation: how we do it. Ann Cardiothorac Surg 2014; 3 (05) 525-531
  • 61 Letsou GV, Anand J, Ogburn E. et al. Low incidence of pump-related infections in Jarvik 2000 ventricular assist device recipients with a subcostal driveline exit site. Tex Heart Inst J 2019; 46 (03) 179-182
  • 62 Kusne S, Danziger-Isakov L, Mooney M. et al. Infection control and prevention practices for mechanical circulatory support: an international survey. J Heart Lung Transplant 2013; 32 DOI: 10.1016/j.healun.2013.01.437.
  • 63 Kallen AJ, Wilson CT, Larson RJ. Perioperative intranasal mupirocin for the prevention of surgical-site infections: systematic review of the literature and meta-analysis. Infect Control Hosp Epidemiol 2005; 26 (12) 916-922
  • 64 Berríos-Torres SI, Umscheid CA, Bratzler DW. et al; Healthcare Infection Control Practices Advisory Committee. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg 2017; 152 (08) 784-791
  • 65 Yoshitake S, Kinoshita O, Nawata K. et al. Novel driveline route for prevention from driveline infection: triple tunnel method. J Cardiol 2018; 72 (04) 363-366
  • 66 Cagliostro B, Levin AP, Fried J. et al. Continuous-flow left ventricular assist devices and usefulness of a standardized strategy to reduce drive-line infections. J Heart Lung Transplant 2016; 35 (01) 108-114
  • 67 Sousa-Uva M, Head SJ, Milojevic M. et al. 2017 EACTS Guidelines on perioperative medication in adult cardiac surgery. Eur J Cardiothorac Surg 2018; 53 (01) 5-33
  • 68 Maly J, Szarszoi O, Netuka I, Dorazilova Z, Pirk J. Fungal infections associated with long-term mechanical circulatory support-diagnosis and management. J Card Surg 2014; 29 (01) 95-100
  • 69 Stulak JM, Maltais S, Cowger J. et al. Prevention of percutaneous driveline infection after left ventricular assist device implantation: prophylactic antibiotics are not necessary. ASAIO J 2013; 59 (06) 570-574
  • 70 Nair PM, Salaita K, Petit RS, Groves JT. Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling. Nat Protoc 2011; 6 (04) 523-539
  • 71 Yarboro LT, Bergin JD, Kennedy JLW. et al. Technique for minimizing and treating driveline infections. Ann Cardiothorac Surg 2014; 3 (06) 557-562
  • 72 Chinn R, Dembitsky W, Eaton L. et al. Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J 2005; 51 (04) 461-470
  • 73 Wus L, Manning M, Entwistle III JW. Left ventricular assist device driveline infection and the frequency of dressing change in hospitalized patients. Heart Lung 2015; 44 (03) 225-229
  • 74 Stahovich M, Sundareswaran KS, Fox S. et al. Reduce driveline trauma through stabilization and exit site management: 30 days feasibility results from the multicenter RESIST study. ASAIO J 2016; 62 (03) 240-245
  • 75 Lander MM, Kunz N, Dunn E. et al. Substantial reduction in driveline infection rates with the modification of driveline dressing protocol. J Card Fail 2018; 24 (11) 746-752
  • 76 Hieda M, Sata M, Seguchi O. et al. Importance of early appropriate intervention including antibiotics and wound care for device-related infection in patients with left ventricular assist device. Transplant Proc 2014; 46 (03) 907-910
  • 77 Son AY, Stein LH, DeAnda A. et al. Impact of chlorhexidine gluconate intolerance on driveline infection during chronic HeartMate II left ventricular assist device support. Int J Artif Organs 2017; 39 (11) 570-574
  • 78 Menon AK, Baranski SK, Unterkofler J. et al. Special treatment and wound care of the driveline exit site after left ventricular assist device implantation. Thorac Cardiovasc Surg 2015; 63 (08) 670-674
  • 79 Özdemir Z, Şenol Çelik S. Wound care of the driveline exit site in patients with a ventricular assist device: a systematic review. Turk Gogus Kalp Damar Cerrahisi Derg 2018; 26 (02) 328-335
  • 80 Durand ML, Ennis SC, Baker JN. et al. Topical polymyxin-trimethoprim prophylaxis may decrease the incidence of driveline infections in patients with continuous-flow left ventricular assist devices. Artif Organs 2017; 41 (02) 169-175
  • 81 Cannon A, Elliott T, Ballew C. et al. Variability in infection control measures for the percutaneous lead among programs implanting long-term ventricular assist devices in the United States. Prog Transplant 2012; 22 (04) 351-359
  • 82 Smith EM, Franzwa J. Chronic outpatient management of patients with a left ventricular assist device. J Thorac Dis 2015; 7 (12) 2112-2124
  • 83 Aburjania N, Sherazi S, Tchantchaleishvili V, Alexis JD, Hay CM. Stopping conventional showering decreases Pseudomonas infections in left ventricular assist device patients. Int J Artif Organs 2017; 40 (06) 282-285
  • 84 Kusne S, Staley L, Arabia F. Prevention and infection management in mechanical circulatory support device recipients. Clin Infect Dis 2017; 64 (02) 222-228
  • 85 Hozayen SM, Soliman AM, Eckman PM. Comparison of two ventricular assist device dressing change protocols. J Heart Lung Transplant 2012; 31 (01) 108-109
  • 86 Schlöglhofer T, Robson D, Bancroft J. et al. International coordinator survey results on the outpatient management of patients with the HeartWare® ventricular assist system. Int J Artif Organs 2017; 39 (11) 553-557
  • 87 Puhlman MWL, Sullivan R. Weekly dressing protocol reduces the incidence of driveline infection. J Heart Lung Transplant 2015; ••• DOI: 10.1016/jhealun.2015.01.516.
  • 88 Barber J, Leslie G, Grad P. et al. A simple education tool for ventricular assist device patients and their caregivers. J Cardiovasc Nurs 2015; 30 (03) E1-E10
  • 89 Itescu S, John R. Interactions between the recipient immune system and the left ventricular assist device surface: immunological and clinical implications. Ann Thorac Surg 2003; 75 (6, Suppl): S58-S65
  • 90 Ankersmit HJ, Tugulea S, Spanier T. et al. Activation-induced T-cell death and immune dysfunction after implantation of left-ventricular assist device. Lancet 1999; 354 (9178): 550-555
  • 91 Varr BC, Restaino SW, Farr M. et al. Infectious complications after cardiac transplantation in patients bridged with mechanical circulatory support devices versus medical therapy. J Heart Lung Transplant 2016; 35 (09) 1116-1123
  • 92 Schaenman JM, Rossetti M, Korin Y. et al. T cell dysfunction and patient age are associated with poor outcomes after mechanical circulatory support device implantation. Hum Immunol 2018; 79 (04) 203-212
  • 93 Carr CM, Jacob J, Park SJ, Karon BL, Williamson EE, Araoz PA. CT of left ventricular assist devices. Radiographics 2010; 30 (02) 429-444
  • 94 Tlili G, Picard F, Pinaquy JB, Domingues-Dos-Santos P, Bordenave L. The usefulness of FDG PET/CT imaging in suspicion of LVAD infection. J Nucl Cardiol 2014; 21 (04) 845-848
  • 95 Sommerlath Sohns JM, Kröhn H, Schöde A. et al. 18F-FDG PET/CT in Left-ventricular assist device infection: initial results supporting the usefulness of image-guided therapy. J Nucl Med 2020; 61 (07) 971-976
  • 96 Kim J, Feller ED, Chen W, Liang Y, Dilsizian V. FDG PET/CT for early detection and localization of left ventricular assist device infection: impact on patient management and outcome. JACC Cardiovasc Imaging 2019; 12 (04) 722-729
  • 97 Litzler PY, Manrique A, Etienne M. et al. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med 2010; 51 (07) 1044-1048
  • 98 Kimura Y, Seguchi O, Mochizuki H. et al. Role of gallium-SPECT-CT in the management of patients with ventricular assist device-specific percutaneous driveline infection. J Card Fail 2019; 25 (10) 795-802
  • 99 Juneau D, Golfam M, Hazra S. et al. Positron emission tomography and single-photon emission computed tomography imaging in the diagnosis of cardiac implantable electronic device infection: a systematic review and meta-analysis. Circ Cardiovasc Imaging 2017; 10 (04) e005772
  • 100 de Vaugelade C, Mesguich C, Nubret K. et al. Infections in patients using ventricular-assist devices: comparison of the diagnostic performance of 18F-FDG PET/CT scan and leucocyte-labeled scintigraphy. J Nucl Cardiol 2019; 26 (01) 42-55
  • 101 Erba PA, Sollini M, Conti U. et al. Radiolabeled WBC scintigraphy in the diagnostic workup of patients with suspected device-related infections. JACC Cardiovasc Imaging 2013; 6 (10) 1075-1086
  • 102 Toda K, Sawa Y. Clinical management for complications related to implantable LVAD use. Gen Thorac Cardiovasc Surg 2015; 63 (01) 1-7
  • 103 Simon D, Fischer S, Grossman A. et al. Left ventricular assist device-related infection: treatment and outcome. Clin Infect Dis 2005; 40 (08) 1108-1115
  • 104 Pereda D, Conte JV. Left ventricular assist device driveline infections. Cardiol Clin 2011; 29 (04) 515-527
  • 105 Haddad E, Lescure FX, Ghodhbane W. et al. Left ventricular assist pump pocket infection: conservative treatment strategy for destination therapy candidates. Int J Artif Organs 2017; 40: 0 DOI: 10.5301/ijao.5000561.
  • 106 Pieri M, Scandroglio AM, Müller M. et al. Surgical management of driveline infections in patients with left ventricular assist devices. J Card Surg 2016; 31 (12) 765-771
  • 107 Balsam LB, Jacoby A, Louie E, Levine JP. Long-term success with driveline exit site relocation for deep driveline infection in left ventricular assist device patients. Innovations (Phila) 2017; 12 (06) 440-445
  • 108 Abicht T, Gordon R, Meehan K, Stosor V, McCarthy P, McGee Jr E. Complex HeartMate II infection treated with pump exchange to HeartWare HVAD. ASAIO J 2013; 59 (02) 188-192
  • 109 Walter V, Stock UA, Soriano-Romero M, Schnitzbauer A, Moritz A, Beiras-Fernandez A. Eradication of a chronic wound and driveline infection after redo-LVAD implantation. J Cardiothorac Surg 2014; 9: 63
  • 110 Bauer TM, Choi JH, Luc JGY. et al. Device exchange versus nonexchange modalities in left ventricular assist device-specific infections: a systematic review and meta-analysis. Artif Organs 2019; 43 (05) 448-457
  • 111 Sperry BW, Fatemi O, Ruiz ME, Najjar SS. Late manifestation of a driveline infection after heart transplantation. J Heart Lung Transplant 2014; 33 (03) 324-325
  • 112 Koval C. VAD infection during bridge-to-transplant, unique aspects of treatment and prevention. Curr Opin Organ Transplant 2018; 23 (04) 400-406
  • 113 Tong MZ, Smedira NG, Soltesz EG. et al. Outcomes of heart transplant after left ventricular assist device specific and related infection. Ann Thorac Surg 2015; 100 (04) 1292-1297
  • 114 Keenan JB, Rajab TK, Armstrong DG, Khalpey Z. Real-time autofluorescence imaging to diagnose LVAD driveline infections. Ann Thorac Surg 2017; 103 (06) e493-e495
  • 115 Sezai A, Unosawa S, Taoka M. et al. New treatment for driveline infection following implantation of a ventricular assist device. Heart Surg Forum 2020; 23 (02) E132-E134
  • 116 Saji M, Taguchi S, Hayama N. et al. Effect of gentian violet on the elimination of methicillin-resistant Staphylococcus aureus (MRSA) existing in the decubitus region [in Japanese]. Nippon Ronen Igakkai Zasshi 1993; 30 (09) 795-801
  • 117 Maley AM, Arbiser JL. Gentian violet: a 19th century drug re-emerges in the 21st century. Exp Dermatol 2013; 22 (12) 775-780
  • 118 Formica F, Perseghin P, Cirò A, Paolini G. Late driveline left ventricular assist device infection treated with frozen-and-thawed allogeneic platelet gel. Interact Cardiovasc Thorac Surg 2014; 19 (03) 523-525
  • 119 Jiritano F, Serraino GF, Rossi M, Dominijanni A, Brescia A, Renzulli A. Ventricular assist device driveline infection: treatment with platelet-rich plasma. Ann Thorac Surg 2013; 96 (02) e37-e38
  • 120 Perseghin P, Sciorelli G, Belotti D. et al. Frozen-and-thawed allogeneic platelet gels for treating postoperative chronic wounds. Transfusion 2005; 45 (09) 1544-1546
  • 121 Bielecki TM, Gazdzik TS, Arendt J, Szczepanski T, Król W, Wielkoszynski T. Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone Joint Surg Br 2007; 89 (03) 417-420
  • 122 Hilker L, von Woedtke T, Weltmann KD, Wollert HG. Cold atmospheric plasma: a new tool for the treatment of superficial driveline infections. Eur J Cardiothorac Surg 2017; 51 (01) 186-187
  • 123 Haertel B, von Woedtke T, Weltmann KD, Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther (Seoul) 2014; 22 (06) 477-490
  • 124 Haddad O, Pham AN, Thomas M. et al. Absorbable antibiotic beads as an adjuvant therapy in treating ventricular assist devices driveline infection: a case report. J Card Surg 2020; 35 (08) 2073-2076
  • 125 Kilo J, Dumfarth J, Höfer D, Grimm M. Successful treatment of driveline infection with vacuum-assisted closure therapy and instillation therapy. Thorac Cardiovasc Surg Rep 2020; 9 (01) e29-e32
  • 126 Orwig D, Logue C, Hendriksen S. et al. An approach to treating a patient with a HeartMate II left ventricular assist device in a multiplace hyperbaric chamber: a case report. Undersea Hyperb Med. 2018; 45: 89-93
  • 127 Kot J, Siondalski P, Lenkiewicz E. The hyperbaric protective tube: a housing for a left ventricular assist device (LVAD) in a multiplace hyperbaric chamber. Diving Hyperb Med 2019; 49 (02) 137-140
  • 128 Waters BH, Park J, Bouwmeester JC. et al. Electrical power to run ventricular assist devices using the Free-range Resonant Electrical Energy Delivery system. J Heart Lung Transplant 2018; 37 (12) 1467-1474
  • 129 Wang JX, Smith JR, Bonde P. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability. Ann Thorac Surg 2014; 97 (04) 1467-1474
  • 130 Pya Y, Maly J, Bekbossynova M. et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant 2019; 38 (04) 339-343