Semin Thromb Hemost 2022; 48(02): 145-160
DOI: 10.1055/s-0041-1732465
Review Article

Snake Venoms in Diagnostic Hemostasis and Thrombosis

Gary William Moore
1   Department of Haematology, Specialist Haemostasis Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
2   Faculty of Science and Technology, Middlesex University London, London, United Kingdom
› Author Affiliations

Abstract

Snake venoms have evolved primarily to immobilize and kill prey, and consequently, they contain some of the most potent natural toxins. Part of that armory is a range of hemotoxic components that affect every area of hemostasis, which we have harnessed to great effect in the study and diagnosis of hemostatic disorders. The most widely used are those that affect coagulation, such as thrombin-like enzymes unaffected by heparin and direct thrombin inhibitors, which can help confirm or dispute their presence in plasma. The liquid gold of coagulation activators is Russell's viper venom, since it contains activators of factor X and factor V. It is used in a range of clotting-based assays, such as assessment of factor X and factor V deficiencies, protein C and protein S deficiencies, activated protein C resistance, and probably the most important test for lupus anticoagulants, the dilute Russell's viper venom time. Activators of prothrombin, such as oscutarin C from Coastal Taipan venom and ecarin from saw-scaled viper venom, are employed in prothrombin activity assays and lupus anticoagulant detection, and ecarin has a valuable role in quantitative assays of direct thrombin inhibitors. Snake venoms affecting primary hemostasis include botrocetin from the jararaca, which can be used to assay von Willebrand factor activity, and convulxin from the cascavel, which can be used to detect deficiency of the platelet collagen receptor, glycoprotein VI. This article takes the reader to every area of the diagnostic hemostasis laboratory to appreciate the myriad applications of snake venoms available in diagnostic practice.



Publication History

Article published online:
12 August 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Ossiboff RJ. Serpentes. In: Terio KA, McAloose D. St. Leger J, eds. Pathology of Wildlife and Zoo Animals. Amsterdam: Elsevier Academic Press; 2018: 897-919
  • 2 Kasturiratne A, Wickremasinghe AR, de Silva N. et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 2008; 5 (11) e218
  • 3 Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers 2017; 3: 17063
  • 4 Casewell NR. Venom evolution: gene loss shapes phenotypic adaptation. Curr Biol 2016; 26 (18) R849-R851
  • 5 Ward-Smith H, Arbuckle K, Naude A, Wüster W. Fangs for the memories? A survey of pain in snakebite patients does not support a strong role for defense in the evolution of snake venom composition. Toxins (Basel) 2020; 12 (03) 201
  • 6 Casewell NR, Wagstaff SC, Wüster W. et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci U S A 2014; 111 (25) 9205-9210
  • 7 Slagboom J, Kool J, Harrison RA, Casewell NR. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. Br J Haematol 2017; 177 (06) 947-959
  • 8 Fry BG, Wüster W. Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 2004; 21 (05) 870-883
  • 9 Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 2005; 15 (03) 403-420
  • 10 Fry BG, Vidal N, van der Weerd L, Kochva E, Renjifo C. Evolution and diversification of the Toxicofera reptile venom system. J Proteomics 2009; 72 (02) 127-136
  • 11 Ferraz CR, Arrahman A, Xie C. et al. Multifunctional toxins in snake venoms and therapeutic implications: from pain to hemorrhage and necrosis. Front Ecol Evol 2019; 7: 1-19
  • 12 Silva A, Kuruppu S, Othman I, Goode RJ, Hodgson WC, Isbister GK. Neurotoxicity in Sri Lankan Russell's viper (Daboia russelii) envenoming is primarily due to U1-viperitoxin-Dr1a, a pre-synaptic neurotoxin. Neurotox Res 2017; 31 (01) 11-19
  • 13 Zanetti G, Duregotti E, Locatelli CA. et al. Variability in venom composition of European viper subspecies limits the cross-effectiveness of antivenoms. Sci Rep 2018; 8 (01) 9818
  • 14 Berling I, Brown SG, Miteff F, Levi C, Isbister GK. Intracranial haemorrhages associated with venom induced consumption coagulopathy in Australian snakebites (ASP-21). Toxicon 2015; 102: 8-13
  • 15 Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 2000; 1477 (1-2): 146-156
  • 16 Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost 2005; 3 (08) 1791-1799
  • 17 Matsui T, Hamako J. Structure and function of snake venom toxins interacting with human von Willebrand factor. Toxicon 2005; 45 (08) 1075-1087
  • 18 Kini RM. Toxins in thrombosis and haemostasis: potential beyond imagination. J Thromb Haemost 2011; 9 (Suppl. 01) 195-208
  • 19 Gutiérrez JM, Escalante T, Rucavado A, Herrera C. Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding. Toxins (Basel) 2016; 8 (04) 93
  • 20 Hougie C. Effect of Russell's viper venom (stypven) on Stuart clotting defect. Proc Soc Exp Biol Med 1956; 93 (03) 570-573
  • 21 Ingram GIC. The history of haemophilia. J Clin Pathol 1976; 29 (06) 469-479
  • 22 Peden Jr JC, Peacock AC. The coagulation of blood by Russell's viper venom; a reaction between Russell's viper venom and beef serum factors. J Lab Clin Med 1958; 52 (01) 101-108
  • 23 RUSVEN package insert 1942. Boots Pure Drug Company Ltd.; Nottingham, England:
  • 24 Cañas CA, Castaño-Valencia S, Castro-Herrera F, Cañas F, Tobón GJ. Biomedical applications of snake venom: from basic science to autoimmunity and rheumatology. J Transl Autoimmun 2020; 4: 100076
  • 25 Lowe GDO, Forbes CD, Prentice CRM. Defibrinating agents. In: Lowe GDO, Barbenel JC, Forbes CD. eds. Clinical Aspects of Blood Viscosity and Cell Deformability. London: Springer; 1981: 241-249
  • 26 Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J 2006; 397 (03) 377-387
  • 27 Adcock DM, Gosselin R, Kitchen S, Dwyre DM. The effect of dabigatran on select specialty coagulation assays. Am J Clin Pathol 2013; 139 (01) 102-109
  • 28 Latallo ZS, Teisseyre E. Evaluation of Reptilase R and thrombin clotting time in the presence of fibrinogen degradation products and heparin. Scand J Haematol Suppl 1971; 13: 261-266
  • 29 Casini A, Undas A, Palla R, Thachil J, de Moerloose P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (09) 1887-1890
  • 30 Ebert RF, Bell WR. Fibrinogen Baltimore II: congenital hypodysfibrinogenemia with delayed release of fibrinopeptide B and decreased rate of fibrinogen synthesis. Proc Natl Acad Sci U S A 1983; 80 (23) 7318-7322
  • 31 Furlan M, Leupin L, Biasiutti FD, Lämmle B. Fibrinogen Bern III: a further case of hereditary fibrinogen variants with substitution A alpha 16 Arg----Cys [in German]. Schweiz Med Wochenschr 1991; 121 (29) 1068-1071
  • 32 Van Cott EM, Smith EY, Galanakis DK. Elevated fibrinogen in an acute phase reaction prolongs the reptilase time but typically not the thrombin time. Am J Clin Pathol 2002; 118 (02) 263-268
  • 33 Abshire TC, Fink LK, Christian J, Hathaway WE. The prolonged thrombin time of nephrotic syndrome. J Pediatr Hematol Oncol 1995; 17 (02) 156-162
  • 34 Al Ghumlas AK, Abdel Gader AG, Al Faleh FZ. Haemostatic abnormalities in liver disease: could some haemostatic tests be useful as liver function tests?. Blood Coagul Fibrinolysis 2005; 16 (05) 329-335
  • 35 Ireland G, Brown SG, Buckley NA. et al; Australian Snakebite Project Investigators. Changes in serial laboratory test results in snakebite patients: when can we safely exclude envenoming?. Med J Aust 2010; 193 (05) 285-290
  • 36 Wedasingha S, Isbister G, Silva A. Bedside coagulation tests in diagnosing venom-induced consumption coagulopathy in snakebite. Toxins (Basel) 2020; 12 (09) 583
  • 37 Abraham SV, Rafi AM, Krishnan SV. et al. Utility of clot waveform analysis in Russell's viper bite victims with hematotoxicity. J Emerg Trauma Shock 2018; 11 (03) 211-216
  • 38 Andrews RK, Berndt MC. Platelet adhesion: a game of catch and release. J Clin Invest 2008; 118 (09) 3009-3011
  • 39 Clemetson KJ, Lu Q, Clemetson JM. Snake C-type lectin-like proteins and platelet receptors. Pathophysiol Haemost Thromb 2005; 34 (4-5): 150-155
  • 40 Thomas KB, Tune EP, Choong SC. Parallel determination of von Willebrand factor--Ristocetin and Botrocetin cofactors. Thromb Res 1994; 75 (04) 401-408
  • 41 Andrews RK, Booth WJ, Gorman JJ, Castaldi PA, Berndt MC. Purification of botrocetin from Bothrops jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry 1989; 28 (21) 8317-8326
  • 42 Fukuda K, Doggett TA, Bankston LA, Cruz MA, Diacovo TG, Liddington RC. Structural basis of von Willebrand factor activation by the snake toxin botrocetin. Structure 2002; 10 (07) 943-950
  • 43 Matsui T, Hamako J, Titani K. Structure and function of snake venom proteins affecting platelet plug formation. Toxins (Basel) 2010; 2 (01) 10-23
  • 44 Nichols TC, Bellinger DA, Merricks EP. et al. Porcine and canine von Willebrand factor and von Willebrand disease: hemostasis, thrombosis, and atherosclerosis studies. Thrombosis 2010; 2010: 461238
  • 45 Flood VH, Friedman KD, Gill JC. et al. Limitations of the ristocetin cofactor assay in measurement of von Willebrand factor function. J Thromb Haemost 2009; 7 (11) 1832-1839
  • 46 Flood VH, Gill JC, Morateck PA. et al. Common VWF exon 28 polymorphisms in African Americans affecting the VWF activity assay by ristocetin cofactor. Blood 2010; 116 (02) 280-286
  • 47 Bodó I, Eikenboom J, Montgomery R, Patzke J, Schneppenheim R, Di Paola J. von Willebrand factor Subcommittee of the Standardization and Scientific Committee of the International Society for Thrombosis and Haemostasis. Platelet-dependent von Willebrand factor activity. Nomenclature and methodology: communication from the SSC of the ISTH. J Thromb Haemost 2015; 13 (07) 1345-1350
  • 48 Hillery CA, Mancuso DJ, Evan Sadler J. et al. Type 2M von Willebrand disease: F606I and I662F mutations in the glycoprotein Ib binding domain selectively impair ristocetin- but not botrocetin-mediated binding of von Willebrand factor to platelets. Blood 1998; 91 (05) 1572-1581
  • 49 Miura S, Nishida S, Makita K. et al. Inhibition assay for the binding of biotinylated von Willebrand factor to platelet-bound microtiter wells in the presence of ristocetin or botrocetin. Anal Biochem 1996; 236 (02) 215-220
  • 50 Howard MA, Perkin J, Salem HH, Firkin BG. The agglutination of human platelets by botrocetin: evidence that botrocetin and ristocetin act at different sites on the factor VIII molecule and platelet membrane. Br J Haematol 1984; 57 (01) 25-35
  • 51 Nishio K, Fujimura Y, Niinomi K. et al. Enhanced botrocetin-induced type IIB von Willebrand factor binding to platelet glycoprotein Ib initiates hyperagglutination of normal platelets. Am J Hematol 1990; 33 (04) 261-266
  • 52 Howard M, Firkin BG. Aggregation to botrocetin in some patients with Bernard-Soulier syndrome. Am J Hematol 1991; 37 (01) 61-62
  • 53 Andrews RK, Kamiguti AS, Berlanga O, Leduc M, Theakston RD, Watson SP. The use of snake venom toxins as tools to study platelet receptors for collagen and von Willebrand factor. Haemostasis 2001; 31 (3-6): 155-172
  • 54 Cesar PHS, Braga MA, Trento MVC, Menaldo DL, Marcussi S. Snake venom disintegrins: an overview of their interaction with integrins. Curr Drug Targets 2019; 20 (04) 465-477
  • 55 Selistre-de-Araujo HS, Pontes CL, Montenegro CF, Martin AC. Snake venom disintegrins and cell migration. Toxins (Basel) 2010; 2 (11) 2606-2621
  • 56 Ullah A. Structure-function studies and mechanism of action of snake venom L-amino acid oxidases. Front Pharmacol 2020; 11: 110
  • 57 Trummal K, Samel M, Aaspõllu A. et al. 5′-Nucleotidase from Vipera lebetina venom. Toxicon 2015; 93: 155-163
  • 58 Gresele P. Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 59 Alessi MC, Sié P, Payrastre B. Strengths and weaknesses of light transmission aggregometry in diagnosing hereditary platelet function disorders. J Clin Med 2020; 9 (03) 763
  • 60 Horii K, Brooks MT, Herr AB. Convulxin forms a dimer in solution and can bind eight copies of glycoprotein VI: implications for platelet activation. Biochemistry 2009; 48 (13) 2907-2914
  • 61 Harrison P, Mackie I, Mumford A. et al; British Committee for Standards in Haematology. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011; 155 (01) 30-44
  • 62 Moroi M, Jung SM, Okuma M, Shinmyozu K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J Clin Invest 1989; 84 (05) 1440-1445
  • 63 Arai M, Yamamoto N, Moroi M, Akamatsu N, Fukutake K, Tanoue K. Platelets with 10% of the normal amount of glycoprotein VI have an impaired response to collagen that results in a mild bleeding tendency. Br J Haematol 1995; 89 (01) 124-130
  • 64 Goodall AH, Appleby J. Flow-cytometric analysis of platelet-membrane glycoprotein expression and platelet activation. Methods Mol Biol 2004; 272: 225-253
  • 65 Niedergang F, Alcover A, Knight CG. et al. Convulxin binding to platelet receptor GPVI: competition with collagen related peptides. Biochem Biophys Res Commun 2000; 273 (01) 246-250
  • 66 Furihata K, Clemetson KJ, Deguchi H, Kunicki TJ. Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity. Arterioscler Thromb Vasc Biol 2001; 21 (11) 1857-1863
  • 67 Alves RRN, Neto NAL, Santana GG, Vieira WLS, Almeida WO. Reptiles used for medicinal and magic religious purposes in Brazil. Appl Herpetol 2009; 6: 257-274
  • 68 Alves RRN, Vieira WLS, Santana GG, Vieira KS, Montenegro PFGP. Herpetofauna used in traditional folk medicine: conservation implications. In: Alves R, Rosa I. eds. Animals in Traditional Folk Medicine. Berlin: Springer; 2013: 109-133
  • 69 Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16 (06) 532-548
  • 70 Peng M, Lu W, Beviglia L, Niewiarowski S, Kirby EP. Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib. Blood 1993; 81 (09) 2321-2328
  • 71 Peng M, Emig FA, Mao A. et al. Interaction of echicetin with a high affinity thrombin binding site on platelet glycoprotein GPIb. Thromb Haemost 1995; 74 (03) 954-957
  • 72 Navdaev A, Dörmann D, Clemetson JM, Clemetson KJ. Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMkappa responsible for platelet agglutination in plasma and inducing signal transduction. Blood 2001; 97 (08) 2333-2341
  • 73 Navdaev A, Subramanian H, Petunin A, Clemetson KJ, Gambaryan S, Walter U. Echicetin coated polystyrene beads: a novel tool to investigate GPIb-specific platelet activation and aggregation. PLoS One 2014; 9 (04) e93569
  • 74 Mohamed Abd El-Aziz T, Garcia Soares A, Stockand JD. Snake venoms in drug discovery: valuable therapeutic tools for life saving. Toxins (Basel) 2019; 11 (10) 564
  • 75 Marsh NA. Diagnostic uses of snake venom. Haemostasis 2001; 31 (3-6): 211-217
  • 76 Marsh NA. Use of snake venom fractions in the coagulation laboratory. Blood Coagul Fibrinolysis 1998; 9 (05) 395-404
  • 77 Nishida S, Fujimura Y, Miura S. et al. Purification and characterization of bothrombin, a fibrinogen-clotting serine protease from the venom of Bothrops jararaca. Biochemistry 1994; 33 (07) 1843-1849
  • 78 Denson KW, Borrett R, Biggs R. The specific assay of prothrombin using the Taipan snake venom. Br J Haematol 1971; 21 (02) 219-226
  • 79 St Pierre L, Masci PP, Filippovich I. et al. Comparative analysis of prothrombin activators from the venom of Australian elapids. Mol Biol Evol 2005; 22 (09) 1853-1864
  • 80 Govers-Riemslag JWP, Speijer H, Zwaal RFA, Rosing J. Purification and characterisation of the prothrombin activator from Oxyuranus scutellatus (Taipan snake). In: Purkle H, Markland FS. eds. Haemostasis and Animal Venoms. New York: Marcel Dekker Inc; 1988: 41-53
  • 81 Rosing J, Zwaal RFA, Tans G. Snake venom prothrombin activators. In: Purkle H, Markland FS. eds. Haemostasis and Animal Venoms. New York: Marcel Dekker Inc; 1988: 3-27
  • 82 Gosselin RC, Douxfils J. Ecarin based coagulation testing. Am J Hematol 2020; 95 (07) 863-869
  • 83 Fenyvesi T, Harenberg J, Weiss C, Jörg I. Comparison of two different ecarin clotting time methods. J Thromb Thrombolysis 2005; 20 (01) 51-56
  • 84 Francis JL. A new chromogenic assay for the specific determination of prothrombin. J Clin Pathol 1979; 32 (07) 651-654
  • 85 Delahousse B, Gilbert M, Nicham F, Thirion C, Giraudeau B, Gruel Y. Comparative evaluation of five different methods for the measurement of plasma factor II levels in carriers of the 20210A prothrombin variant. Blood Coagul Fibrinolysis 2002; 13 (05) 465-470
  • 86 Yamada D, Morita T. CA-1 method, a novel assay for quantification of normal prothrombin using a Ca2+ -dependent prothrombin activator, carinactivase-1. Thromb Res 1999; 94 (04) 221-226
  • 87 Iwahashi H, Kimura M, Nakajima K, Yamada D, Morita T. Determination of plasma prothrombin level by Ca2+-dependent prothrombin activator (CA-1) during warfarin anticoagulation. J Heart Valve Dis 2001; 10 (03) 388-392
  • 88 Ohara M, Takahashi H, Lee MT. et al. Determinants of the over-anticoagulation response during warfarin initiation therapy in Asian patients based on population pharmacokinetic-pharmacodynamic analyses. PLoS One 2014; 9 (08) e105891
  • 89 Weinger RS, Rudy C, Moake JL, Olson JD, Cimo PL. Prothrombin Houston: a dysprothrombin identifiable by crossed immunoelectrofocusing and abnormal Echis carinatus venom activation. Blood 1980; 55 (05) 811-816
  • 90 Collados MT, Fernández J, Páramo JA. et al. Purification and characterization of a variant of human prothrombin: prothrombin Segovia. Thromb Res 1997; 85 (06) 465-477
  • 91 Bafunno V, Bury L, Tiscia GL. et al. A novel congenital dysprothrombinemia leading to defective prothrombin maturation. Thromb Res 2014; 134 (05) 1135-1141
  • 92 Kornalík F, Vorlová Z. Ecarin test in diagnosis of dicoumarol therapy, liver diseases and DIC. Folia Haematol Int Mag Klin Morphol Blutforsch 1988; 115 (04) 483-487
  • 93 Nakayama D, Ben Ammar Y, Miyata T, Takeda S. Structural basis of coagulation factor V recognition for cleavage by RVV-V. FEBS Lett 2011; 585 (19) 3020-3025
  • 94 Kisiel W, Canfield WM. Snake venom proteases that activate blood-coagulation factor V. In: Lorand L. ed. Methods in Enzymology. New York: Academic Press; 1981: 275-285
  • 95 Keller FG, Ortel TL, Quinn-Allen MA, Kane WH. Thrombin-catalyzed activation of recombinant human factor V. Biochemistry 1995; 34 (12) 4118-4124
  • 96 Takeya H, Nishida S, Miyata T. et al. Coagulation factor X activating enzyme from Russell's viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J Biol Chem 1992; 267 (20) 14109-14117
  • 97 Tans G, Rosing J. Snake venom activators of factor X: an overview. Haemostasis 2001; 31 (3-6): 225-233
  • 98 Sousa LF, Zdenek CN, Dobson JS. et al. Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) venoms from Brazil: differential biochemistry and antivenom efficacy resulting from prey-driven venom variation. Toxins (Basel) 2018; 10 (10) 411
  • 99 Babson AL, Flanagan ML. Quantitative one-stage assays for factors V and X. Am J Clin Pathol 1975; 64 (06) 817-819
  • 100 Liang Q, Chen Q, Ding Q. et al. Six novel missense mutations causing factor X deficiency and application of thrombin generation test. Thromb Res 2013; 131 (06) 554-559
  • 101 Girolami A, Scarparo P, Scandellari R, Allemand E. Congenital factor X deficiencies with a defect only or predominantly in the extrinsic or in the intrinsic system: a critical evaluation. Am J Hematol 2008; 83 (08) 668-671
  • 102 Girolami A, Scapin M, Scarparo P, Vettore S. Different genotypes are responsible for the normal Russell viper venom assays seen in some cases of congenital factor X deficiency. Am J Hematol 2008; 83 (11) 884-885
  • 103 Girolami A, Vettore S, Scarparo P, Lombardi AM. Persistent validity of a classification of congenital factor X defects based on clotting, chromogenic and immunological assays even in the molecular biology era. Haemophilia 2011; 17 (01) 17-20
  • 104 Girolami A, Cosi E, Sambado L, Girolami B, Randi ML. Complex history of the discovery and characterization of congenital factor X deficiency. Semin Thromb Hemost 2015; 41 (04) 359-365
  • 105 Moore GW, Rangarajan S, Holland LJ, Henley A, Savidge GF. Low frequency of elevated prothrombin times in patients with lupus anticoagulants when using a recombinant thromboplastin reagent: implications for dosing and monitoring of oral anticoagulant therapy. Br J Biomed Sci 2005; 62 (01) 15-18 , quiz 47
  • 106 Rosborough TK, Shepherd MF. Unreliability of international normalized ratio for monitoring warfarin therapy in patients with lupus anticoagulant. Pharmacotherapy 2004; 24 (07) 838-842
  • 107 Sanfelippo MJ, Sennet J, McMahon EJ. Falsely elevated INRs in warfarin-treated patients with the lupus anticoagulant. WMJ 2000; 99 (03) 62-64 , 43
  • 108 McGlasson DL, Romick BG, Rubal BJ. Comparison of a chromogenic factor X assay with international normalized ratio for monitoring oral anticoagulation therapy. Blood Coagul Fibrinolysis 2008; 19 (06) 513-517
  • 109 Crowl A, Schullo-Feulner A, Moon JY. Warfarin monitoring in antiphospholipid syndrome and lupus anticoagulant. Ann Pharmacother 2014; 48 (11) 1479-1483
  • 110 Baumann Kreuziger LM, Datta YH, Johnson AD, Zantek ND, Shanley R, Reding MT. Monitoring anticoagulation in patients with an unreliable prothrombin time/international normalized ratio: factor II versus chromogenic factor X testing. Blood Coagul Fibrinolysis 2014; 25 (03) 232-236
  • 111 Cohen H, Efthymiou M, Devreese KMJ. Monitoring of anticoagulation in thrombotic antiphospholipid syndrome. J Thromb Haemost 2021; 19 (04) 892-908
  • 112 Efthymiou M, Lawrie AS, Mackie I. et al. Thrombin generation and factor X assays for the assessment of warfarin anticoagulation in thrombotic antiphospholipid syndrome. Thromb Res 2015; 135 (06) 1191-1197
  • 113 Arpino PA, Demirjian Z, Van Cott EM. Use of the chromogenic factor X assay to predict the international normalized ratio in patients transitioning from argatroban to warfarin. Pharmacotherapy 2005; 25 (02) 157-164
  • 114 Austin JH, Stearns CR, Winkler AM, Paciullo CA. Use of the chromogenic factor X assay in patients transitioning from argatroban to warfarin therapy. Pharmacotherapy 2012; 32 (06) 493-501
  • 115 Sanfelippo MJ, Zinsmaster W, Scherr DL, Shaw GR. Use of chromogenic assay of factor X to accept or reject INR results in Warfarin treated patients. Clin Med Res 2009; 7 (03) 103-105
  • 116 Kress LF, Catanese J. Enzymatic inactivation of human antithrombin III. Limited proteolysis of the inhibitor by snake venom proteinases in the presence of heparin. Biochim Biophys Acta 1980; 615 (01) 178-186
  • 117 Cooper PC, Pavlova A, Moore GW, Hickey KP, Marlar RA. Recommendations for clinical laboratory testing for protein C deficiency, for the subcommittee on plasma coagulation inhibitors of the ISTH. J Thromb Haemost 2020; 18 (02) 271-277
  • 118 Gempeler-Messina PM, Volz K, Bühler B, Müller C. Protein C activators from snake venoms and their diagnostic use. Haemostasis 2001; 31 (3-6): 266-272
  • 119 Asmat A, Ramzan F. Venom protein C activators as diagnostic agents for defects of protein C system. Protein Pept Lett 2018; 25 (07) 643-651
  • 120 Marlar RA, Gausman JN. Laboratory testing issues for protein C, protein S, and antithrombin. Int J Lab Hematol 2014; 36 (03) 289-295
  • 121 Roshan TM, Stein N, Jiang XY. Comparison of clot-based and chromogenic assay for the determination of protein c activity. Blood Coagul Fibrinolysis 2019; 30 (04) 156-160
  • 122 Seidel H, Haracska B, Naumann J, Westhofen P, Hass MS, Kruppenbacher JP. Laboratory limitations of excluding hereditary protein C deficiency by chromogenic assay: discrepancies of phenotype and genotype. Clin Appl Thromb Hemost 2020; 26: 1076029620912028
  • 123 Bin Hanif T, Anwar J, Idrees M. Evaluation of Pro-C global for identification of defects in protein C/S anticoagulant pathway. J Ayub Med Coll Abbottabad 2011; 23 (01) 89-91
  • 124 Toulon P, Smirnov M, Triscott M. et al. A new chromogenic assay (HemosIL ThromboPath) is sensitive to major prothrombotic risk factors affecting the protein C pathway. Results of a multicenter study. Thromb Res 2009; 124 (01) 137-143
  • 125 Brinkman HJM, Ahnström J, Castoldi E, Dahlbäck B, Marlar RA. Pleiotropic anticoagulant functions of protein S, consequences for the clinical laboratory. Communication from the SSC of the ISTH. J Thromb Haemost 2021; 19 (01) 281-286
  • 126 Marlar RA, Gausman JN, Tsuda H, Rollins-Raval MA, Brinkman HJM. Recommendations for clinical laboratory testing for protein S deficiency: communication from the SSC committee plasma coagulation inhibitors of the ISTH. J Thromb Haemost 2021; 19 (01) 68-74
  • 127 Duebgen S, Kauke T, Marschall C. et al. Genotype and laboratory and clinical phenotypes of protein s deficiency. Am J Clin Pathol 2012; 137 (02) 178-184
  • 128 Kadauke S, Khor B, Van Cott EM. Activated protein C resistance testing for factor V Leiden. Am J Hematol 2014; 89 (12) 1147-1150
  • 129 Denson KW, Haddon ME, Reed SV, Davidson S, Littlewood TJ. A more discriminating test for APC resistance and a possible screening test to include protein C and protein S. Thromb Res 1996; 81 (01) 151-156
  • 130 Moore GW, Van Cott EM, Cutler JA, Mitchell MJ, Adcock DM. subcommittee on plasma coagulation inhibitors. Recommendations for clinical laboratory testing of activated protein C resistance; communication from the SSC of the ISTH. J Thromb Haemost 2019; 17 (09) 1555-1561
  • 131 Favaloro EJ, Mirochnik O, McDonald D. Functional activated protein C resistance assays: correlation with factor V DNA analysis is better with RVVT-than APTT-based assays. Br J Biomed Sci 1999; 56 (01) 23-33
  • 132 Dean E, Favaloro EJ. The changing face of activated protein C resistance testing – a 10-year perspective. Ann Blood 2020; 5: 6
  • 133 Quehenberger P, Handler S, Mannhalter C, Kyrle PA, Speiser W. The factor V (Leiden) test: evaluation of an assay based on dilute Russell viper venom time for the detection of the factor V Leiden mutation. Thromb Res 1999; 96 (02) 125-133
  • 134 Quenhenberger P, Handler S, Mannhalter C, Pabinger-Fasching I, Speiser W. Evaluation of a highly specific functional test for the detection of factor V Leiden. Int J Clin Lab Res 2000; 30 (03) 113-117
  • 135 Wilmer M, Stocker C, Bühler B, Conell B, Calatzis A. Improved distinction of factor V wild-type and factor V Leiden using a novel prothrombin-based activated protein C resistance assay. Am J Clin Pathol 2004; 122 (06) 836-842
  • 136 Schöni R, Quehenberger P, Wu JR, Wilmer M. Clinical evaluation of a new functional test for detection of activated protein C resistance (Pefakit APC-R Factor V Leiden) at two centers in Europe and the USA. Thromb Res 2007; 119 (01) 17-26
  • 137 Hoagland LE, Triplett DA, Peng F, Barna L. APC-resistance as measured by a Textarin time assay: comparison to the APTT-based method. Thromb Res 1996; 83 (05) 363-373
  • 138 Miyawaki Y, Suzuki A, Fujita J. et al. Thrombosis from a prothrombin mutation conveying antithrombin resistance. N Engl J Med 2012; 366 (25) 2390-2396
  • 139 Bulato C, Radu CM, Campello E. et al. New prothrombin mutation (Arg596Trp, Prothrombin Padua 2) associated with venous thromboembolism. Arterioscler Thromb Vasc Biol 2016; 36 (05) 1022-1029
  • 140 Miljic P, Gvozdenov M, Takagi Y. et al. Clinical and biochemical characterization of the prothrombin Belgrade mutation in a large Serbian pedigree: new insights into the antithrombin resistance mechanism. J Thromb Haemost 2017; 15 (04) 670-677
  • 141 Melge AR, Prakash O, Sunitha S, Biswas R, Biswas L. C GM, Structure-function studies of prothrombin Amrita, a dysfunctional prothrombin characterized by point mutation at Arg553→Gln. Int J Biol Macromol 2018; 110: 550-557
  • 142 Djordjevic V, Kovac M, Miljic P. et al. A novel prothrombin mutation in two families with prominent thrombophilia--the first cases of antithrombin resistance in a Caucasian population. J Thromb Haemost 2013; 11 (10) 1936-1939
  • 143 Murata M, Takagi A, Suzuki A. et al. Development of a new laboratory test to evaluate antithrombin resistance in plasma. Thromb Res 2014; 133 (02) 293-298
  • 144 Galli M, Finazzi G, Bevers EM, Barbui T. Kaolin clotting time and dilute Russell's viper venom time distinguish between prothrombin-dependent and beta 2-glycoprotein I-dependent antiphospholipid antibodies. Blood 1995; 86 (02) 617-623
  • 145 Pengo V, Biasiolo A, Rampazzo P, Brocco T. dRVVT is more sensitive than KCT or TTI for detecting lupus anticoagulant activity of anti-beta2-glycoprotein I autoantibodies. Thromb Haemost 1999; 81 (02) 256-258
  • 146 de Laat HB, Derksen RH, Urbanus RT, Roest M, de Groot PG. beta2-glycoprotein I-dependent lupus anticoagulant highly correlates with thrombosis in the antiphospholipid syndrome. Blood 2004; 104 (12) 3598-3602
  • 147 de Laat B, Derksen RH, Urbanus RT, de Groot PG. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood 2005; 105 (04) 1540-1545
  • 148 Triplett DA. Use of the dilute Russell viper venom time (dRVVT): its importance and pitfalls. J Autoimmun 2000; 15 (02) 173-178
  • 149 Jennings I, Greaves M, Mackie IJ, Kitchen S, Woods TA, Preston FE. UK National External Quality Assessment Scheme for Blood Coagulation. Lupus anticoagulant testing: improvements in performance in a UK NEQAS proficiency testing exercise after dissemination of national guidelines on laboratory methods. Br J Haematol 2002; 119 (02) 364-369
  • 150 Dembitzer FR, Ledford Kraemer MR, Meijer P, Peerschke EI. Lupus anticoagulant testing: performance and practices by North American clinical laboratories. Am J Clin Pathol 2010; 134 (05) 764-773
  • 151 Adams M. Measurement of lupus anticoagulants: an update on quality in laboratory testing. Semin Thromb Hemost 2013; 39 (03) 267-271
  • 152 Lawrie AS, Mackie IJ, Purdy G, Machin SJ. The sensitivity and specificity of commercial reagents for the detection of lupus anticoagulant show marked differences in performance between photo-optical and mechanical coagulometers. Thromb Haemost 1999; 81 (05) 758-762
  • 153 Moore GW, Savidge GF. Heterogeneity of Russell's viper venom affects the sensitivity of the dilute Russell's viper venom time to lupus anticoagulants. Blood Coagul Fibrinolysis 2004; 15 (03) 279-282
  • 154 Foster WM, Triplett DA, Ieko M, Barna LK. Analysis of Russell viper venom (RVV) by SDS-PAGE. [abstract 158] Lupus 1994; 3: 352
  • 155 Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon 1991; 29 (11) 1279-1303
  • 156 Tun-Pe, Nu-Nu-Lwin, Aye-Aye-Myint, Kyi-May-Htwe, Khin-Aung-Cho. Biochemical and biological properties of the venom from Russell's viper (Daboia russelli siamensis) of varying ages. Toxicon 1995; 33 (06) 817-821
  • 157 Goldford MD. Lupus anticoagulant screen and confirm reagents utilizing the FX activating venom from Vipera lebetina . J Thromb Haemost 2013; 11 (03) 61
  • 158 Moore GW. Alternative assays to dRVVT and aPTT for lupus anticoagulant detection. Am J Hematol 2020; 95 (08) 992-998
  • 159 Keeling D, Mackie I, Moore GW, Greer IA, Greaves M. British Committee for Standards in Haematology. Guidelines on the investigation and management of antiphospholipid syndrome. Br J Haematol 2012; 157 (01) 47-58
  • 160 Tripodi A, Cohen H, Devreese KMJ. Lupus anticoagulant detection in anticoagulated patients. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis. J Thromb Haemost 2020; 18 (07) 1569-1575
  • 161 Kini RM, Rao VS, Joseph JS. Procoagulant proteins from snake venoms. Haemostasis 2001; 31 (3-6): 218-224
  • 162 Triplett DA, Stocker KF, Unger GA, Barna LK. The Textarin/Ecarin ratio: a confirmatory test for lupus anticoagulants. Thromb Haemost 1993; 70 (06) 925-931
  • 163 Favaloro EJ, Bonar R, Zebeljan D, Kershaw G, Marsden K. Laboratory investigation of lupus anticoagulants: mixing studies are sometimes required. J Thromb Haemost 2010; 8 (12) 2828-2831
  • 164 Rooney AM, McNally T, Mackie IJ, Machin SJ. The Taipan snake venom time: a new test for lupus anticoagulant. J Clin Pathol 1994; 47 (06) 497-501
  • 165 Moore GW, Smith MP, Savidge GF. The Ecarin time is an improved confirmatory test for the Taipan snake venom time in warfarinized patients with lupus anticoagulants. Blood Coagul Fibrinolysis 2003; 14 (03) 307-312
  • 166 Moore GW. Combining Taipan snake venom time/Ecarin time screening with the mixing studies of conventional assays increases detection rates of lupus anticoagulants in orally anticoagulated patients. Thromb J 2007; 5: 12
  • 167 van Os GM, de Laat B, Kamphuisen PW, Meijers JC, de Groot PG. Detection of lupus anticoagulant in the presence of rivaroxaban using Taipan snake venom time. J Thromb Haemost 2011; 9 (08) 1657-1659
  • 168 Arachchillage DR, Mackie IJ, Efthymiou M, Isenberg DA, Machin SJ, Cohen H. Interactions between rivaroxaban and antiphospholipid antibodies in thrombotic antiphospholipid syndrome. J Thromb Haemost 2015; 13 (07) 1264-1273
  • 169 Pouplard C, Vayne C, Berthomet C, Guery EA, Delahousse B, Gruel Y. The Taipan snake venom time can be used to detect lupus anticoagulant in patients treated by rivaroxaban. Int J Lab Hematol 2017; 39 (03) e60-e63
  • 170 Favaloro EJ, Mohammed S, Curnow J, Pasalic L. Laboratory testing for lupus anticoagulant (LA) in patients taking direct oral anticoagulants (DOACs): potential for false positives and false negatives. Pathology 2019; 51 (03) 292-300
  • 171 Hillarp A, Strandberg K, Gustafsson KM, Lindahl TL. Unveiling the complex effects of direct oral anticoagulants on dilute Russell's viper venom time assays. J Thromb Haemost 2020; 18 (08) 1866-1873
  • 172 Siriez R, Dogné JM, Gosselin R, Laloy J, Mullier F, Douxfils J. Comprehensive review of the impact of direct oral anticoagulants on thrombophilia diagnostic tests: practical recommendations for the laboratory. Int J Lab Hematol 2021; 43 (01) 7-20
  • 173 Moore GW, Jones PO, Platton S. et al. International multi-centre, multi-platform study to validate Taipan snake venom time as a lupus anticoagulant screening test with ecarin time as the confirmatory test: Communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J Thromb Haemost 2021; (e-pub ahead of print) DOI: 10.1111/jth.15438.
  • 174 De Kesel PM, Devreese KMJ. Direct oral anticoagulant adsorption: impact on lupus anticoagulant testing-review of the literature and evaluation on spiked and patient samples. J Thromb Haemost 2020; 18 (08) 2003-2017
  • 175 Baker SA, Jin J, Pfaffroth C, Vu T, Zehnder JL. DOAC-Stop in lupus anticoagulant testing: direct oral anticoagulant interference removed in most samples. Res Pract Thromb Haemost 2021; 5 (02) 314-325
  • 176 Forastiero RR, Cerrato GS, Carreras LO. Evaluation of recently described tests for detection of the lupus anticoagulant. Thromb Haemost 1994; 72 (05) 728-733
  • 177 Moore GW, Culhane AP, Maloney JC, Archer RA, Breen KA, Hunt BJ. Taipan snake venom time coupled with ecarin time enhances lupus anticoagulant detection in nonanticoagulated patients. Blood Coagul Fibrinolysis 2016; 27 (04) 477-480
  • 178 Patel JP, Byrne RA, Patel RK, Arya R. Progress in the monitoring of direct oral anticoagulant therapy. Br J Haematol 2019; 184 (06) 912-924
  • 179 Gosselin RC, Adcock Funk DM, Taylor JM. et al. Comparison of anti-Xa and dilute Russell viper venom time assays in quantifying drug levels in patients on therapeutic doses of rivaroxaban. Arch Pathol Lab Med 2014; 138 (12) 1680-1684
  • 180 Douxfils J, Chatelain B, Hjemdahl P. et al. Does the Russell viper venom time test provide a rapid estimation of the intensity of oral anticoagulation? A cohort study. Thromb Res 2015; 135 (05) 852-860
  • 181 Colombini MP, Derogis PBMC, de Aranda VF, de Campos Guerra JC, Hamerschlak N, Mangueira CLP. Comparison of different laboratory tests in the evaluation of hemorrhagic risk of patients using rivaroxaban in the critical care setting: diagnostic accuracy study. Thromb J 2017; 15: 21
  • 182 Sennesael AL, Exner T, Chatelain B. et al. An optimized dRVVT-based assay to estimate the intensity of anticoagulation in patients treated with direct oral anticoagulants. Thromb Res 2017; 157: 29-37
  • 183 Park SH, Seo YH, Park PW. et al. Evaluation of global laboratory methods and establishing on-therapy ranges for monitoring apixaban and rivaroxaban: experience at a single institution. J Clin Lab Anal 2019; 33 (05) e22869
  • 184 Van Cott EM, Roberts AJ, Dager WE. Laboratory monitoring of parenteral direct thrombin inhibitors. Semin Thromb Hemost 2017; 43 (03) 270-276
  • 185 Lange U, Nowak G, Bucha E. Ecarin chromogenic assay--a new method for quantitative determination of direct thrombin inhibitors like hirudin. Pathophysiol Haemost Thromb 2003; 33 (04) 184-191
  • 186 Alouidor B, Sweeney RE, Tat T, Wong RK, Yoon JY. Microfluidic point-of-care ecarin-based clotting and chromogenic assays for monitoring direct thrombin inhibitors. J Extra Corpor Technol 2019; 51 (01) 29-37
  • 187 Körber MK, Langer E, Köhr M, Wernecke KD, Korte W, von Heymann C. In vitro and ex vivo measurement of prophylactic dabigatran concentrations with a new ecarin-based thromboelastometry test. Transfus Med Hemother 2017; 44 (02) 100-105
  • 188 Schöni R. The use of snake venom-derived compounds for new functional diagnostic test kits in the field of haemostasis. Pathophysiol Haemost Thromb 2005; 34 (4-5): 234-240
  • 189 Calatzis A, Peetz D, Haas S, Spannagl M, Rudin K, Wilmer M. Prothrombinase-induced clotting time assay for determination of the anticoagulant effects of unfractionated and low-molecular-weight heparins, fondaparinux, and thrombin inhibitors. Am J Clin Pathol 2008; 130 (03) 446-454
  • 190 Harder S, Parisius J, Picard-Willems B. Monitoring direct FXa-inhibitors and fondaparinux by prothrombinase-induced clotting time (PiCT): relation to FXa-activity and influence of assay modifications. Thromb Res 2008; 123 (02) 396-403
  • 191 Korte W, Jovic R, Hollenstein M, Degiacomi P, Gautschi M, Ferrández A. The uncalibrated prothrombinase-induced clotting time test. Equally convenient but more precise than the aPTT for monitoring of unfractionated heparin. Hamostaseologie 2010; 30 (04) 212-216
  • 192 Brisset AC, Ferrández A, Krause M, Rathbun S, Marlar R, Korte W. The PiCT® test is a reliable alternative to the activated partial thromboplastin time in unfractionated heparin therapy management: results from a multicenter study. J Thromb Haemost 2016; 14 (11) 2187-2193
  • 193 Tachias K, Madison EL. Variants of tissue-type plasminogen activator which display substantially enhanced stimulation by fibrin. J Biol Chem 1995; 270 (31) 18319-18322
  • 194 Zhang Y, Wisner A, Maroun RC, Choumet V, Xiong Y, Bon C. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling. J Biol Chem 1997; 272 (33) 20531-20537
  • 195 Sanchez EF, Felicori LF, Chavez-Olortegui C. et al. Biochemical characterization and molecular cloning of a plasminogen activator proteinase (LV-PA) from bushmaster snake venom. Biochim Biophys Acta 2006; 1760 (12) 1762-1771
  • 196 Park D, Kim H, Chung K, Kim DS, Yun Y. Expression and characterization of a novel plasminogen activator from Agkistrodon halys venom. Toxicon 1998; 36 (12) 1807-1819
  • 197 Salvagno GL, Berntorp E. Thrombin generation assays (TGAs). Methods Mol Biol 2017; 1646: 515-522
  • 198 Salvagno GL, Berntorp E. Thrombin generation testing for monitoring hemophilia treatment: a clinical perspective. Semin Thromb Hemost 2010; 36 (07) 780-790
  • 199 Teichman J, Chaudhry HR, Sholzberg M. Novel assays in the coagulation laboratory: a clinical and laboratory perspective. Transfus Apheresis Sci 2018; 57 (04) 480-484
  • 200 Kintigh J, Monagle P, Ignjatovic V. A review of commercially available thrombin generation assays. Res Pract Thromb Haemost 2017; 2 (01) 42-48
  • 201 Lincz LF, Lonergan A, Scorgie FE. et al. Endogenous thrombin potential for predicting risk of venous thromboembolism in carriers of factor V Leiden. Pathophysiol Haemost Thromb 2006; 35 (06) 435-439
  • 202 Hézard N, Bouaziz-Borgi L, Remy MG, Florent B, Nguyen P. Protein C deficiency screening using a thrombin-generation assay. Thromb Haemost 2007; 97 (01) 165-166
  • 203 Gatt A, van Veen JJ, Cooper P, Kitchen S, Makris M. Protein C deficiency screening using a thrombin generation assay - an upgrade. Thromb Haemost 2007; 98 (03) 691-692
  • 204 Boeer K, Cuznetov L, Loesche W. Thrombin generation as marker to estimate thrombosis risk in patients with abnormal test results in lupus anticoagulant routine diagnostics. Thromb J 2013; 11 (01) 24
  • 205 Svoboda P, Meier J, Freyvogel TA. Purification and characterization of three alpha 2-antiplasmin and alpha 2-macroglobulin inactivating enzymes from the venom of the Mexican west coast rattlesnake (Crotalus basiliscus). Toxicon 1995; 33 (10) 1331-1346
  • 206 Rijkers DT, Wielders SJ, Béguin S, Hemker HC. Prevention of the influence of fibrin and alpha2-macroglobulin in the continuous measurement of the thrombin potential: implications for an endpoint determination of the optical density. Thromb Res 1998; 89 (04) 161-169
  • 207 Cvirn G, Gallistl S, Muntean W. Alpha-2-macroglobulin inhibits the anticoagulant action of activated protein C in cord and adult plasma. Haemostasis 2001; 31 (01) 1-11
  • 208 Isbister GK, Woods D, Alley S, O'Leary MA, Seldon M, Lincz LF. Endogenous thrombin potential as a novel method for the characterization of procoagulant snake venoms and the efficacy of antivenom. Toxicon 2010; 56 (01) 75-85
  • 209 Larréché S, Jean FX, Benois A. et al. Thromboelastographic study of the snakebite-related coagulopathy in Djibouti. Blood Coagul Fibrinolysis 2018; 29 (02) 196-204
  • 210 Duarte RCF, Rios DRA, Leite PM, Alves LC, Magalhães HPB, Carvalho MDG. Thrombin generation test for evaluating hemostatic effects of Brazilian snake venoms. Toxicon 2019; 163: 36-43
  • 211 Hadley GP, McGarr P, Mars M. The role of thromboelastography in the management of children with snake-bite in southern Africa. Trans R Soc Trop Med Hyg 1999; 93 (02) 177-179
  • 212 Roszko PJ, Kavanaugh MJ, Boese ML, Longwell JJ, Earley AS. Rotational thromboelastometry (ROTEM) guided treatment of an Afghanistan viper envenomation at a NATO military hospital. Clin Toxicol (Phila) 2017; 55 (03) 229-230
  • 213 Leffers P, Ferreira J, Sollee D, Schauben J. Thromboelastography in the management of snakebite-induced coagulopathy: a case series and literature review. Blood Coagul Fibrinolysis 2018; 29 (07) 656-660