Semin Respir Crit Care Med 2022; 43(01): 097-124
DOI: 10.1055/s-0041-1741019
Review Article

Infections Due to Acinetobacter baumannii–calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options

Joseph P. Lynch III
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
,
Nina M. Clark
2   Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
,
George G. Zhanel
3   Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
› Author Affiliations

Abstract

Bacteria within the genus Acinetobacter (principally A. baumannii–calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.



Publication History

Article published online:
16 February 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lynch III JP, Zhanel GG, Clark NM. Infections due to Acinetobacter baumannii in the ICU: treatment options. Semin Respir Crit Care Med 2017; 38 (03) 311-325
  • 2 Gupta V, Ye G, Olesky M, Lawrence K, Murray J, Yu K. Trends in resistant Enterobacteriaceae and Acinetobacter species in hospitalized patients in the United States: 2013-2017. BMC Infect Dis 2019; 19 (01) 742
  • 3 Bertrand X, Dowzicky MJ. Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther 2012; 34 (01) 124-137
  • 4 Diekema DJ, Hsueh PR, Mendes RE. et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 2019; 63 (07) e00355-e19
  • 5 Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nordmann P. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii . Antimicrob Agents Chemother 2012; 56 (02) 1087-1089
  • 6 Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother 2011; 66 (09) 2070-2074
  • 7 Karampatakis T, Antachopoulos C, Tsakris A, Roilides E. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in Greece: an extended review (2000-2015). Future Microbiol 2017; 12: 801-815
  • 8 Turner PJ. Meropenem activity against European isolates: report on the MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 2006 results. Diagn Microbiol Infect Dis 2008; 60 (02) 185-192
  • 9 Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis 2019; 69 (Suppl. 07) S565-S575
  • 10 Cetin ES, Durmaz R, Tetik T, Otlu B, Kaya S, Calişkan A. Epidemiologic characterization of nosocomial Acinetobacter baumannii infections in a Turkish university hospital by pulsed-field gel electrophoresis. Am J Infect Control 2009; 37 (01) 56-64
  • 11 Ruan Z, Chen Y, Jiang Y. et al. Wide distribution of CC92 carbapenem-resistant and OXA-23-producing Acinetobacter baumannii in multiple provinces of China. Int J Antimicrob Agents 2013; 42 (04) 322-328
  • 12 Huang L, Sun L, Yan Y. Clonal spread of carbapenem resistant Acinetobacter baumannii ST92 in a Chinese Hospital during a 6-year period. J Microbiol 2013; 51 (01) 113-117
  • 13 Kuo SC, Lee YT, Yang SP. et al. Evaluation of the effect of appropriate antimicrobial therapy on mortality associated with Acinetobacter nosocomialis bacteraemia. Clin Microbiol Infect 2013; 19 (07) 634-639
  • 14 Lee HS, Loh YX, Lee JJ, Liu CS, Chu C. Antimicrobial consumption and resistance in five Gram-negative bacterial species in a hospital from 2003 to 2011. J Microbiol Immunol Infect 2015; 48 (06) 647-654
  • 15 Ogutlu A, Guclu E, Karabay O, Utku AC, Tuna N, Yahyaoglu M. Effects of carbapenem consumption on the prevalence of Acinetobacter infection in intensive care unit patients. Ann Clin Microbiol Antimicrob 2014; 13: 7
  • 16 Ziółkowski G, Pawłowska I, Krawczyk L, Wojkowska-Mach J. Antibiotic consumption versus the prevalence of multidrug-resistant Acinetobacter baumannii and Clostridium difficile infections at an ICU from 2014-2015. J Infect Public Health 2018; 11 (05) 626-630
  • 17 Clark NM, Zhanel GG, Lynch III JP. Emergence of antimicrobial resistance among Acinetobacter species: a global threat. Curr Opin Crit Care 2016; 22 (05) 491-499
  • 18 Jones LS, Carvalho MJ, Toleman MA. et al. Characterization of plasmids in extensively drug-resistant Acinetobacter strains isolated in India and Pakistan. Antimicrob Agents Chemother 2015; 59 (02) 923-929
  • 19 Doi Y, Murray GL, Peleg AY. Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options. Semin Respir Crit Care Med 2015; 36 (01) 85-98
  • 20 Jones CL, Clancy M, Honnold C. et al. Fatal outbreak of an emerging clone of extensively drug-resistant Acinetobacter baumannii with enhanced virulence. Clin Infect Dis 2015; 61 (02) 145-154
  • 21 Davis JS, McMillan M, Swaminathan A. et al. A 16-year prospective study of community-onset bacteremic Acinetobacter pneumonia: low mortality with appropriate initial empirical antibiotic protocols. Chest 2014; 146 (04) 1038-1045
  • 22 Marí-Almirall M, Cosgaya C, Pons MJ. et al. Pathogenic Acinetobacter species including the novel Acinetobacter dijkshoorniae recovered from market meat in Peru. Int J Food Microbiol 2019; 305: 108248
  • 23 Malta RCR, Ramos GLPA, Nascimento JDS. From food to hospital: we need to talk about Acinetobacter spp. Germs 2020; 10 (04) 210-217
  • 24 Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 2017; 30 (01) 409-447
  • 25 Magiorakos AP, Srinivasan A, Carey RB. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18 (03) 268-281
  • 26 Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21 (03) 538-582
  • 27 Abbott I, Cerqueira GM, Bhuiyan S, Peleg AY. Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect Ther 2013; 11 (04) 395-409
  • 28 Wisplinghoff H, Paulus T, Lugenheim M. et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect 2012; 64 (03) 282-290
  • 29 Chen FJ, Huang WC, Liao YC. et al. Molecular epidemiology of emerging carbapenem resistance in Acinetobacter nosocomialis and Acinetobacter pittii in Taiwan, 2010 to 2014. Antimicrob Agents Chemother 2019; 63 (04) e02007-e02018
  • 30 Singkham-In U, Chatsuwan T. Mechanisms of carbapenem resistance in Acinetobacter pittii and Acinetobacter nosocomialis isolates from Thailand. J Med Microbiol 2018; 67 (12) 1667-1672
  • 31 Wang X, Chen T, Yu R, Lü X, Zong Z. Acinetobacter pittii and Acinetobacter nosocomialis among clinical isolates of the Acinetobacter calcoaceticus-baumannii complex in Sichuan, China. Diagn Microbiol Infect Dis 2013; 76 (03) 392-395
  • 32 Park YK, Jung SI, Park KH, Kim SH, Ko KS. Characteristics of carbapenem-resistant Acinetobacter spp. other than Acinetobacter baumannii in South Korea. Int J Antimicrob Agents 2012; 39 (01) 81-85
  • 33 Koh TH, Tan TT, Khoo CT. et al. Acinetobacter calcoaceticus-Acinetobacter baumannii complex species in clinical specimens in Singapore. Epidemiol Infect 2012; 140 (03) 535-538
  • 34 Chusri S, Chongsuvivatwong V, Rivera JI. et al. Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii . Antimicrob Agents Chemother 2014; 58 (07) 4172-4179
  • 35 Chen Y, Guo P, Huang H, Huang Y, Wu Z, Liao K. Detection of co-harboring OXA-58 and NDM-1 carbapenemase producing genes resided on a same plasmid from an Acinetobacter pittii clinical isolate in China. Iran J Basic Med Sci 2019; 22 (01) 106-111
  • 36 Chopjitt P, Putthanachote N, Ungcharoen R. et al. Genomic characterization of clinical extensively drug-resistant Acinetobacter pittii isolates. Microorganisms 2021; 9 (02) 242
  • 37 Karah N, Haldorsen B, Hegstad K, Simonsen GS, Sundsfjord A, Samuelsen Ø. Norwegian Study Group of Acinetobacter. Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. J Antimicrob Chemother 2011; 66 (04) 738-744
  • 38 Chuang YC, Sheng WH, Li SY. et al. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with Acinetobacter bacteremia . Clin Infect Dis 2011; 52 (03) 352-360
  • 39 Peleg AY, de Breij A, Adams MD. et al. The success of Acinetobacter species; genetic, metabolic and virulence attributes. PLoS One 2012; 7 (10) e46984
  • 40 Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45 (06) 568-585
  • 41 Skariyachan S, Taskeen N, Ganta M, Venkata Krishna B. Recent perspectives on the virulent factors and treatment options for multidrug-resistant Acinetobacter baumannii . Crit Rev Microbiol 2019; 45 (03) 315-333
  • 42 Jani M, Mathee K, Azad RK. Identification of novel genomic islands in Liverpool epidemic strain of Pseudomonas aeruginosa using segmentation and clustering. Front Microbiol 2016; 7: 1210
  • 43 Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2018; 16 (02) 91-102
  • 44 Komp Lindgren P, Higgins PG, Seifert H, Cars O. Prevalence of hypermutators among clinical Acinetobacter baumannii isolates. J Antimicrob Chemother 2016; 71 (03) 661-665
  • 45 Liou ML, Soo PC, Ling SR, Kuo HY, Tang CY, Chang KC. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii . J Microbiol Immunol Infect 2014; 47 (04) 275-281
  • 46 Weidensdorfer M, Ishikawa M, Hori K. et al. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii . Virulence 2019; 10 (01) 68-81
  • 47 Nasr P. Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii . J Hosp Infect 2020; 104 (01) 4-11
  • 48 Tacconelli E, Carrara E, Savoldi A. et al; WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18 (03) 318-327
  • 49 Lee YT, Kuo SC, Yang SP. et al. Bacteremic nosocomial pneumonia caused by Acinetobacter baumannii and Acinetobacter nosocomialis: a single or two distinct clinical entities?. Clin Microbiol Infect 2013; 19 (07) 640-645
  • 50 Freire MP, de Oliveira Garcia D, Garcia CP. et al. Bloodstream infection caused by extensively drug-resistant Acinetobacter baumannii in cancer patients: high mortality associated with delayed treatment rather than with the degree of neutropenia. Clin Microbiol Infect 2016; 22 (04) 352-358
  • 51 Özgür ES, Horasan ES, Karaca K, Ersöz G, Naycı Atış S, Kaya A. Ventilator-associated pneumonia due to extensive drug-resistant Acinetobacter baumannii: risk factors, clinical features, and outcomes. Am J Infect Control 2014; 42 (02) 206-208
  • 52 Galal YS, Youssef MR, Ibrahiem SK. Ventilator-associated pneumonia: incidence, risk factors and outcome in paediatric intensive care units at Cairo University Hospital. J Clin Diagn Res 2016; 10 (06) SC06-SC11
  • 53 Sievert DM, Ricks P, Edwards JR. et al; National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013; 34 (01) 1-14
  • 54 Tsitsopoulos PP, Iosifidis E, Antachopoulos C. et al. Nosocomial bloodstream infections in neurosurgery: a 10-year analysis in a center with high antimicrobial drug-resistance prevalence. Acta Neurochir (Wien) 2016; 158 (09) 1647-1654
  • 55 Jahani-Sherafat S, Razaghi M, Rosenthal VD. et al. Device-associated infection rates and bacterial resistance in six academic teaching hospitals of Iran: findings from the International Nocosomial Infection Control Consortium (INICC). J Infect Public Health 2015; 8 (06) 553-561
  • 56 Lob SH, Hoban DJ, Sahm DF, Badal RE. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii . Int J Antimicrob Agents 2016; 47 (04) 317-323
  • 57 Zurawski DV, Banerjee J, Alamneh YA, Shearer JP, Demons ST. Skin and soft tissue models for Acinetobacter baumannii infection. Methods Mol Biol 2019; 1946: 271-287
  • 58 Gao J, Zhao X, Bao Y. et al. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards. Burns 2014; 40 (02) 295-299
  • 59 Öncül O, Öksüz S, Acar A. et al. Nosocomial infection characteristics in a burn intensive care unit: analysis of an eleven-year active surveillance. Burns 2014; 40 (05) 835-841
  • 60 Munier AL, Biard L, Rousseau C. et al. Incidence, risk factors, and outcome of multidrug-resistant Acinetobacter baumannii acquisition during an outbreak in a burns unit. J Hosp Infect 2017; 97 (03) 226-233
  • 61 Senturk GC, Ozay R, Kul G. et al. Evaluation of post-operative meningitis: comparison of meningitis caused by Acinetobacter spp. and other possible causes. Turk Neurosurg 2019; 29 (06) 804-810
  • 62 Xiao J, Zhang C, Ye S. Acinetobacter baumannii meningitis in children: a case series and literature review. Infection 2019; 47 (04) 643-649
  • 63 Cascio A, Conti A, Sinardi L. et al. Post-neurosurgical multidrug-resistant Acinetobacter baumannii meningitis successfully treated with intrathecal colistin. A new case and a systematic review of the literature. Int J Infect Dis 2010; 14 (07) e572-e579
  • 64 Karaiskos I, Galani L, Baziaka F, Giamarellou H. Intraventricular and intrathecal colistin as the last therapeutic resort for the treatment of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii ventriculitis and meningitis: a literature review. Int J Antimicrob Agents 2013; 41 (06) 499-508
  • 65 Schuertz KF, Tuon FF, Palmeiro JK. et al. Bacteremia and meningitis caused by OXA-23-producing Acinetobacter baumannii - molecular characterization and susceptibility testing for alternative antibiotics. Braz J Microbiol 2018; 49 (Suppl. 01) 199-204
  • 66 Sharma R, Goda R, Borkar SA. et al. Outcome following postneurosurgical Acinetobacter meningitis: an institutional experience of 72 cases. Neurosurg Focus 2019; 47 (02) E8
  • 67 Fan L, Wang Z, Wang Q. et al. Increasing rates of Acinetobacter baumannii infection and resistance in an oncology department. J Cancer Res Ther 2018; 14 (01) 68-71
  • 68 Turkoglu M, Mirza E, Tunçcan OG. et al. Acinetobacter baumannii infection in patients with hematologic malignancies in intensive care unit: risk factors and impact on mortality. J Crit Care 2011; 26 (05) 460-467
  • 69 Gu Z, Han Y, Meng T. et al. Risk factors and clinical outcomes for patients with Acinetobacter baumannii bacteremia. Medicine (Baltimore) 2016; 95 (09) e2943
  • 70 Wang X, Zhang L, Sun A. et al. Acinetobacter baumannii bacteraemia in patients with haematological malignancy: a multicentre retrospective study from the Infection Working Party of Jiangsu Society of Hematology. Eur J Clin Microbiol Infect Dis 2017; 36 (07) 1073-1081
  • 71 Lin CY, Chen YM, Lin MC. et al. Risk factors of multidrug-resistant Acinetobacter baumannii recurrence after successful eradication in ventilated patients. Biomed J 2016; 39 (02) 130-138
  • 72 Chiang MC, Kuo SC, Chen SJ. et al. Clinical characteristics and outcomes of bacteremia due to different genomic species of Acinetobacter baumannii complex in patients with solid tumors. Infection 2012; 40 (01) 19-26
  • 73 Fukuta Y, Muder RR, Agha ME. et al. Risk factors for acquisition of multidrug-resistant Acinetobacter baumannii among cancer patients. Am J Infect Control 2013; 41 (12) 1249-1252
  • 74 Huang ST, Chiang MC, Kuo SC. et al. Risk factors and clinical outcomes of patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J Microbiol Immunol Infect 2012; 45 (05) 356-362
  • 75 Hsu JF, Chu SM, Lien R. et al. Case-control analysis of endemic Acinetobacter baumannii bacteremia in the neonatal intensive care unit. Am J Infect Control 2014; 42 (01) 23-27
  • 76 Oncül O, Keskin O, Acar HV. et al. Hospital-acquired infections following the 1999 Marmara earthquake. J Hosp Infect 2002; 51 (01) 47-51
  • 77 Maegele M, Gregor S, Steinhausen E. et al. The long-distance tertiary air transfer and care of tsunami victims: injury pattern and microbiological and psychological aspects. Crit Care Med 2005; 33 (05) 1136-1140
  • 78 Zanetti G, Blanc DS, Federli I. et al. Importation of Acinetobacter baumannii into a burn unit: a recurrent outbreak of infection associated with widespread environmental contamination. Infect Control Hosp Epidemiol 2007; 28 (06) 723-725
  • 79 Murray CK, Yun HC, Griffith ME, Hospenthal DR, Tong MJ. Acinetobacter infection: what was the true impact during the Vietnam conflict?. Clin Infect Dis 2006; 43 (03) 383-384
  • 80 Dallo SF, Weitao T. Insights into Acinetobacter war-wound infections, biofilms, and control. Adv Skin Wound Care 2010; 23 (04) 169-174
  • 81 Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med 2008; 358 (12) 1271-1281
  • 82 Petersen K, Cannegieter SC, van der Reijden TJ. et al. Diversity and clinical impact of Acinetobacter baumannii colonization and infection at a military medical center. J Clin Microbiol 2011; 49 (01) 159-166
  • 83 Weintrob AC, Murray CK, Xu J. et al. Early infections complicating the care of combat casualties from Iraq and Afghanistan. Surg Infect (Larchmt) 2018; 19 (03) 286-297
  • 84 Ranjbar R, Farahani A. Study of genetic diversity, biofilm formation, and detection of carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrob Resist Infect Control 2019; 8: 172
  • 85 Tokajian S, Eisen JA, Jospin G. et al. Draft genome sequences of Acinetobacter baumannii strains harboring the blaNDM-1 gene isolated in Lebanon from civilians wounded during the Syrian Civil War. Genome Announc 2016; 4 (01) 4
  • 86 Granzer H, Hagen RM, Warnke P. et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii complex isolates from patients that were injured during the Eastern Ukrainian conflict. Eur J Microbiol Immunol (Bp) 2016; 6 (02) 109-117
  • 87 Christie C, Mazon D, Hierholzer Jr W, Patterson JE. Molecular heterogeneity of Acinetobacter baumannii isolates during seasonal increase in prevalence. Infect Control Hosp Epidemiol 1995; 16 (10) 590-594
  • 88 Dexter C, Murray GL, Paulsen IT, Peleg AY. Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev Anti Infect Ther 2015; 13 (05) 567-573
  • 89 Leung WS, Chu CM, Tsang KY, Lo FH, Lo KF, Ho PL. Fulminant community-acquired Acinetobacter baumannii pneumonia as a distinct clinical syndrome. Chest 2006; 129 (01) 102-109
  • 90 Chen MZ, Hsueh PR, Lee LN, Yu CJ, Yang PC, Luh KT. Severe community-acquired pneumonia due to Acinetobacter baumannii . Chest 2001; 120 (04) 1072-1077
  • 91 Tonnii S, Chua HH. Case series: fulminant community-acquired Acinetobacter pneumonia. Med J Malaysia 2020; 75 (02) 186-188
  • 92 Xu A, Zhu H, Gao B. et al. Diagnosis of severe community-acquired pneumonia caused by Acinetobacter baumannii through next-generation sequencing: a case report. BMC Infect Dis 2020; 20 (01) 45
  • 93 Serota DP, Sexton ME, Kraft CS, Palacio F. Severe community-acquired pneumonia due to Acinetobacter baumannii in North America: case report and review of the literature. Open Forum Infect Dis 2018; 5 (03) ofy044
  • 94 Larcher R, Pantel A, Arnaud E, Sotto A, Lavigne JP. First report of cavitary pneumonia due to community-acquired Acinetobacter pittii, study of virulence and overview of pathogenesis and treatment. BMC Infect Dis 2017; 17 (01) 477
  • 95 Asai N, Sakanashi D, Suematsu H. et al. Clinical manifestations and risk factors of community-onset Acinetobacter species pneumonia in Japan; case control study in a single institute in Japan. J Infect Chemother 2019; 25 (08) 639-642
  • 96 Anstey NM, Currie BJ, Hassell M, Palmer D, Dwyer B, Seifert H. Community-acquired bacteremic Acinetobacter pneumonia in tropical Australia is caused by diverse strains of Acinetobacter baumannii, with carriage in the throat in at-risk groups. J Clin Microbiol 2002; 40 (02) 685-686
  • 97 Falagas ME, Karveli EA, Kelesidis I, Kelesidis T. Community-acquired Acinetobacter infections. Eur J Clin Microbiol Infect Dis 2007; 26 (12) 857-868
  • 98 Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents 2012; 39 (02) 105-114
  • 99 Gavaldà L, Soriano AM, Cámara J. et al. Control of endemic extensively drug-resistant Acinetobacter baumannii with a cohorting policy and cleaning procedures based on the 1 room, 1 wipe approach. Am J Infect Control 2016; 44 (05) 520-524
  • 100 Garnacho-Montero J, Dimopoulos G, Poulakou G. et al; European Society of Intensive Care Medicine. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med 2015; 41 (12) 2057-2075
  • 101 Young LS, Sabel AL, Price CS. Epidemiologic, clinical, and economic evaluation of an outbreak of clonal multidrug-resistant Acinetobacter baumannii infection in a surgical intensive care unit. Infect Control Hosp Epidemiol 2007; 28 (11) 1247-1254
  • 102 Senok A, Garaween G, Raji A, Khubnani H, Kim Sing G, Shibl A. Genetic relatedness of clinical and environmental Acinetobacter baumannii isolates from an intensive care unit outbreak. J Infect Dev Ctries 2015; 9 (06) 665-669
  • 103 Nucleo E, Caltagirone M, Marchetti VM. et al; AMCLI – GLISTer Group, ESCMID Study Group Elderly Infections – ESGIE. Colonization of long-term care facility residents in three Italian Provinces by multidrug-resistant bacteria. Antimicrob Resist Infect Control 2018; 7: 33
  • 104 Townsend J, Park AN, Gander R. et al. Acinetobacter infections and outcomes at an academic medical center: a disease of long-term care. Open Forum Infect Dis 2015; 2 (01) ofv023
  • 105 Chen CH, Kuo HY, Hsu PJ. et al. Clonal spread of carbapenem-resistant Acinetobacter baumannii across a community hospital and its affiliated long-term care facilities: a cross sectional study. J Microbiol Immunol Infect 2018; 51 (03) 377-384
  • 106 Liou ML, Chen KH, Yeh HL, Lai CY, Chen CH. Persistent nasal carriers of Acinetobacter baumannii in long-term-care facilities. Am J Infect Control 2017; 45 (07) 723-727
  • 107 Leangapichart T, Gautret P, Griffiths K. et al. Acquisition of a high diversity of bacteria during the Hajj Pilgrimage, including Acinetobacter baumannii with blaOXA-72 and Escherichia coli with blaNDM-5 carbapenemase genes. Antimicrob Agents Chemother 2016; 60 (10) 5942-5948
  • 108 Perez F, Endimiani A, Ray AJ. et al. Carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae across a hospital system: impact of post-acute care facilities on dissemination. J Antimicrob Chemother 2010; 65 (08) 1807-1818
  • 109 Wen S, Feng D, Lu Z. et al. Microbial infection pattern, pathogenic features and resistance mechanism of carbapenem-resistant Gram negative bacilli during long-term hospitalization. Microb Pathog 2018; 117: 356-360
  • 110 Perez S, Innes GK, Walters MS. et al. Increase in hospital-acquired carbapenem-resistant Acinetobacter baumannii infection and colonization in an acute care hospital during a surge in COVID-19 admissions - New Jersey, February-July 2020. MMWR Morb Mortal Wkly Rep 2020; 69 (48) 1827-1831
  • 111 Katchanov J, Asar L, Klupp EM. et al. Carbapenem-resistant Gram-negative pathogens in a German university medical center: prevalence, clinical implications and the role of novel β-lactam/β-lactamase inhibitor combinations. PLoS One 2018; 13 (04) e0195757
  • 112 Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect 2011; 17 (08) 1201-1208
  • 113 Apisarnthanarak A, Apisarnthanarak P, Warren DK, Fraser VJ. Is central venous catheter tips' colonization with multi-drug resistant Acinetobacter baumannii a predictor for bacteremia?. Clin Infect Dis 2011; 52 (08) 1080-1082
  • 114 Hosoglu S, Arslan E, Aslan E, Deveci Ö. Use of carbapenems and glycopeptides is significant risk for multidrug resistant Acinetobacter baumannii infections. J Infect Dev Ctries 2018; 12 (02) 67-72
  • 115 Inchai J, Liwsrisakun C, Theerakittikul T, Chaiwarith R, Khositsakulchai W, Pothirat C. Risk factors of multidrug-resistant, extensively drug-resistant and pandrug-resistant Acinetobacter baumannii ventilator-associated pneumonia in a Medical Intensive Care Unit of University Hospital in Thailand. J Infect Chemother 2015; 21 (08) 570-574
  • 116 Garnacho-Montero J, Gutiérrez-Pizarraya A, Díaz-Martín A. et al. Acinetobacter baumannii in critically ill patients: molecular epidemiology, clinical features and predictors of mortality. Enferm Infecc Microbiol Clin 2016; 34 (09) 551-558
  • 117 Brotfain E, Borer A, Koyfman L. et al. Multidrug resistance Acinetobacter bacteremia secondary to ventilator-associated pneumonia: risk factors and outcome. J Intensive Care Med 2017; 32 (09) 528-534
  • 118 Henig O, Weber G, Hoshen MB. et al. Risk factors for and impact of carbapenem-resistant Acinetobacter baumannii colonization and infection: matched case-control study. Eur J Clin Microbiol Infect Dis 2015; 34 (10) 2063-2068
  • 119 Vincent JL, Rello J, Marshall J. et al; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302 (21) 2323-2329
  • 120 Esterly JS, Griffith M, Qi C, Malczynski M, Postelnick MJ, Scheetz MH. Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrob Agents Chemother 2011; 55 (10) 4844-4849
  • 121 Zilberberg MD, Nathanson BH, Sulham K, Fan W, Shorr AF. Multidrug resistance, inappropriate empiric therapy, and hospital mortality in Acinetobacter baumannii pneumonia and sepsis. Crit Care 2016; 20 (01) 221
  • 122 Tal-Jasper R, Katz DE, Amrami N. et al. Clinical and epidemiological significance of carbapenem resistance in Acinetobacter baumannii infections. Antimicrob Agents Chemother 2016; 60 (05) 3127-3131
  • 123 Lemos EV, de la Hoz FP, Einarson TR. et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect 2014; 20 (05) 416-423
  • 124 Teo J, Lim TP, Hsu LY. et al. Extensively drug-resistant Acinetobacter baumannii in a Thai hospital: a molecular epidemiologic analysis and identification of bactericidal polymyxin B-based combinations. Antimicrob Resist Infect Control 2015; 4 (01) 2
  • 125 Afhami S, Seifi A, Hajiabdolbaghi M. et al. Assessment of device-associated infection rates in teaching hospitals in Islamic Republic of Iran. East Mediterr Health J 2019; 25 (02) 90-97
  • 126 Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009-2011). Diagn Microbiol Infect Dis 2014; 78 (04) 443-448
  • 127 Martins AF, Kuchenbecker R, Sukiennik T. et al. Carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme: dissemination in Southern Brazil. Infection 2009; 37 (05) 474-476
  • 128 Viana GF, Zago MC, Moreira RR. et al. ISAba1/blaOXA-23: a serious obstacle to controlling the spread and treatment of Acinetobacter baumannii strains. Am J Infect Control 2016; 44 (05) 593-595
  • 129 Chung DR, Song JH, Kim SH. et al; Asian Network for Surveillance of Resistant Pathogens Study Group. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med 2011; 184 (12) 1409-1417
  • 130 Kim T, Chong YP, Park SY. et al. Risk factors for hospital-acquired pneumonia caused by carbapenem-resistant Gram-negative bacteria in critically ill patients: a multicenter study in Korea. Diagn Microbiol Infect Dis 2014; 78 (04) 457-461
  • 131 Sader HS, Jones RN, Silva JB. SENTRY Participants Group (Latin America, etc.). Skin and soft tissue infections in Latin American medical centers: four-year assessment of the pathogen frequency and antimicrobial susceptibility patterns. Diagn Microbiol Infect Dis 2002; 44 (03) 281-288
  • 132 Le NK, Hf W, Vu PD. et al. High prevalence of hospital-acquired infections caused by gram-negative carbapenem resistant strains in Vietnamese pediatric ICUs: a multi-centre point prevalence survey. Medicine (Baltimore) 2016; 95 (27) e4099
  • 133 Huang H, Chen B, Liu G. et al. A multi-center study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii . BMC Infect Dis 2018; 18 (01) 11
  • 134 Azimi T, Maham S, Fallah F, Azimi L, Gholinejad Z. Evaluating the antimicrobial resistance patterns among major bacterial pathogens isolated from clinical specimens taken from patients in Mofid Children's Hospital, Tehran, Iran: 2013-2018. Infect Drug Resist 2019; 12: 2089-2102
  • 135 Baykara N, Akalın H, Arslantaş MK. et al; Sepsis Study Group. Epidemiology of sepsis in intensive care units in Turkey: a multicenter, point-prevalence study. Crit Care 2018; 22 (01) 93
  • 136 Al-Mousa HH, Omar AA, Rosenthal VD. et al. Device-associated infection rates, bacterial resistance, length of stay, and mortality in Kuwait: International Nosocomial Infection Consortium findings. Am J Infect Control 2016; 44 (04) 444-449
  • 137 Nazer LH, Kharabsheh A, Rimawi D, Mubarak S, Hawari F. Characteristics and outcomes of Acinetobacter baumannii infections in critically ill patients with cancer: a matched case-control study. Microb Drug Resist 2015; 21 (05) 556-561
  • 138 Elkhatib WF, Khalil MAF, Ashour HM. Integrons and antiseptic resistance genes mediate resistance of Acinetobacter baumannii and Pseudomonas aeruginosa isolates from intensive care unit patients with wound infections. Curr Mol Med 2019; 19 (04) 286-293
  • 139 Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004; 39 (03) 309-317
  • 140 Romanin P, Palermo RL, Cavalini JF. et al. Multidrug- and extensively drug-resistant Acinetobacter baumannii in a tertiary hospital from Brazil: the importance of carbapenemase encoding genes and epidemic clonal complexes in a 10-year study. Microb Drug Resist 2019; 25 (09) 1365-1373
  • 141 Falagas ME, Kasiakou SK, Rafailidis PI, Zouglakis G, Morfou P. Comparison of mortality of patients with Acinetobacter baumannii bacteraemia receiving appropriate and inappropriate empirical therapy. J Antimicrob Chemother 2006; 57 (06) 1251-1254
  • 142 Shorr AF, Zilberberg MD, Micek ST, Kollef MH. Predictors of hospital mortality among septic ICU patients with Acinetobacter spp. bacteremia: a cohort study. BMC Infect Dis 2014; 14: 572
  • 143 Rodríguez CH, Balderrama Yarhui N, Nastro M. et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in South America. J Med Microbiol 2016; 65 (10) 1088-1091
  • 144 Leão AC, Menezes PR, Oliveira MS, Levin AS. Acinetobacter spp. are associated with a higher mortality in intensive care patients with bacteremia: a survival analysis. BMC Infect Dis 2016; 16: 386
  • 145 Higgins PG, Poirel L, Lehmann M, Nordmann P, Seifert H. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii . Antimicrob Agents Chemother 2009; 53 (12) 5035-5038
  • 146 Carvalho KR, Carvalho-Assef AP, Peirano G, Santos LC, Pereira MJ, Asensi MD. Dissemination of multidrug-resistant Acinetobacter baumannii genotypes carrying bla(OXA-23) collected from hospitals in Rio de Janeiro, Brazil. Int J Antimicrob Agents 2009; 34 (01) 25-28
  • 147 Merkier AK, Catalano M, Ramírez MS. et al. Polyclonal spread of bla(OXA-23) and bla(OXA-58) in Acinetobacter baumannii isolates from Argentina. J Infect Dev Ctries 2008; 2 (03) 235-240
  • 148 Opazo A, Domínguez M, Bello H, Amyes SG, González-Rocha G. OXA-type carbapenemases in Acinetobacter baumannii in South America. J Infect Dev Ctries 2012; 6 (04) 311-316
  • 149 Tabah A, Koulenti D, Laupland K. et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med 2012; 38 (12) 1930-1945
  • 150 Nowak J, Zander E, Stefanik D. et al; MagicBullet Working Group WP4. High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 2017; 72 (12) 3277-3282
  • 151 Pascale R, Bussini L, Gaibani P. et al. Carbapenem resistant bacteria in intensive care unit during COVID-19 pandemic: multicenter before-after cross sectional study. Infect Control Hosp Epidemiol 2021; ;(April 16): 1-6
  • 152 Russo A, Giuliano S, Ceccarelli G. et al. Comparison of septic shock due to multidrug-resistant Acinetobacter baumannii or Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in intensive care unit patients. Antimicrob Agents Chemother 2018; 62 (06) e02562-e17
  • 153 Lee HY, Chen CL, Wu SR, Huang CW, Chiu CH. Risk factors and outcome analysis of Acinetobacter baumannii complex bacteremia in critical patients. Crit Care Med 2014; 42 (05) 1081-1088
  • 154 Hidron AI, Edwards JR, Patel J. et al; National Healthcare Safety Network Team, Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 2008; 29 (11) 996-1011
  • 155 Koulenti D, Blot S, Dulhunty JM. et al; EU-VAP/CAP Study Group. COPD patients with ventilator-associated pneumonia: implications for management. Eur J Clin Microbiol Infect Dis 2015; 34 (12) 2403-2411
  • 156 Inchai J, Pothirat C, Liwsrisakun C, Deesomchok A, Kositsakulchai W, Chalermpanchai N. Ventilator-associated pneumonia: epidemiology and prognostic indicators of 30-day mortality. Jpn J Infect Dis 2015; 68 (03) 181-186
  • 157 Zheng YL, Wan YF, Zhou LY. et al. Risk factors and mortality of patients with nosocomial carbapenem-resistant Acinetobacter baumannii pneumonia. Am J Infect Control 2013; 41 (07) e59-e63
  • 158 Resende MM, Monteiro SG, Callegari B, Figueiredo PM, Monteiro CR, Monteiro-Neto V. Epidemiology and outcomes of ventilator-associated pneumonia in northern Brazil: an analytical descriptive prospective cohort study. BMC Infect Dis 2013; 13: 119
  • 159 Mohd Sazlly Lim S, Zainal Abidin A, Liew SM, Roberts JA, Sime FB. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: a systematic review and meta-analysis. J Infect 2019; 79 (06) 593-600
  • 160 Leblebicioglu H, Rosenthal VD, Arikan OA. et al; Turkish Branch of INICC, Findings of the International Nosocomial Infection Control Consortium (INICC). Device-associated hospital-acquired infection rates in Turkish intensive care units. J Hosp Infect 2007; 65 (03) 251-257
  • 161 Gaynes R, Edwards JR. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 2005; 41 (06) 848-854
  • 162 Quartin AA, Scerpella EG, Puttagunta S, Kett DH. A comparison of microbiology and demographics among patients with healthcare-associated, hospital-acquired, and ventilator-associated pneumonia: a retrospective analysis of 1184 patients from a large, international study. BMC Infect Dis 2013; 13: 561
  • 163 Wunderink RG, Niederman MS, Kollef MH. et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 2012; 54 (05) 621-629
  • 164 McCracken M, Mataseje LF, Loo V. et al; Canadian Antimicrobial Resistance Alliance (CARA). Characterization of Acinetobacter baumannii and meropenem-resistant Pseudomonas aeruginosa in Canada: results of the CANWARD 2007-2009 study. Diagn Microbiol Infect Dis 2011; 69 (03) 335-341
  • 165 Zhanel GG, Adam HJ. Canadian Antimicrobial Resistance Alliance (CARA) and CANWARD. Ten Years of the CANWARD Study (2007-16) J Antimicrob Chemother 2019; 74 (Suppl 4) iv2-iv4
  • 166 Koulenti D, Tsigou E, Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis 2017; 36 (11) 1999-2006
  • 167 Erdem H, Cag Y, Gencer S. et al. Treatment of ventilator-associated pneumonia (VAP) caused by Acinetobacter: results of prospective and multicenter ID-IRI study. Eur J Clin Microbiol Infect Dis 2020; 39 (01) 45-52
  • 168 Bandić-Pavlović D, Zah-Bogović T, Žižek M. et al. Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. J Chemother 2020; 32 (07) 344-358
  • 169 Özvatan T, Akalın H, Sınırtaş M. et al. Nosocomial Acinetobacter pneumonia: treatment and prognostic factors in 356 cases. Respirology 2016; 21 (02) 363-369
  • 170 Chawla R. Epidemiology, etiology, and diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia in Asian countries. Am J Infect Control 2008; 36 (4, Suppl): S93-S100
  • 171 Tan Y, Zhou K, Tang X. et al. Bacteremic and non-bacteremic pneumonia caused by Acinetobacter baumannii in ICUs of South China: a clinical and microbiological study. Sci Rep 2017; 7 (01) 15279
  • 172 Huang Y, Zhou Q, Wang W. et al. Acinetobacter baumannii ventilator-associated pneumonia: clinical efficacy of combined antimicrobial therapy and in vitro drug sensitivity test results. Front Pharmacol 2019; 10: 92
  • 173 Ren J, Li X, Wang L, Liu M, Zheng K, Wang Y. Risk factors and drug resistance of the MDR Acinetobacter baumannii in pneumonia patients in ICU. Open Med (Wars) 2019; 14: 772-777
  • 174 Jain M, Sharma A, Sen MK, Rani V, Gaind R, Suri JC. Phenotypic and molecular characterization of Acinetobacter baumannii isolates causing lower respiratory infections among ICU patients. Microb Pathog 2019; 128: 75-81
  • 175 Wunderink RG, Matsunaga Y, Ariyasu M. et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis 2021; 21 (02) 213-225
  • 176 Bassetti M, Echols R, Matsunaga Y. et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis 2021; 21 (02) 226-240
  • 177 Song CT, Hwee J, Song C, Tan BK, Chong SJ. Burns infection profile of Singapore: prevalence of multidrug-resistant Acinetobacter baumannii and the role of blood cultures. Burns Trauma 2016; 4: 13
  • 178 Shaykh Baygloo N, Bouzari M, Rahimi F. et al. Identification of genomic species of Acinetobacter isolated from burns of ICU patients. Arch Iran Med 2015; 18 (10) 638-642
  • 179 Salisbury AM, Mullin M, Chen R, Percival SL. Efficacy of poloxamer-based wound dressings on Acinetobacter baumannii biofilms. Adv Wound Care (New Rochelle) 2019; 8 (10) 463-468
  • 180 Fleming ID, Krezalek MA, Belogortseva N. et al. Modeling Acinetobacter baumannii wound infections: the critical role of iron. J Trauma Acute Care Surg 2017; 82 (03) 557-565
  • 181 Ramanathan S, Suda KJ, Fitzpatrick MA. et al. Multidrug-resistant Acinetobacter: risk factors and outcomes in veterans with spinal cord injuries and disorders. Am J Infect Control 2017; 45 (11) 1183-1189
  • 182 Lupo A, Haenni M, Madec JY. Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr 2018; 6 (03) 6
  • 183 Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed Res Int 2014; 2014: 249856
  • 184 Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014; 71 (03) 292-301
  • 185 Pagano M, Martins AF, Barth AL. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii . Braz J Microbiol 2016; 47 (04) 785-792
  • 186 Kwon HI, Kim S, Oh MH, Shin M, Lee JC. Distinct role of outer membrane protein A in the intrinsic resistance of Acinetobacter baumannii and Acinetobacter nosocomialis . Infect Genet Evol 2019; 67: 33-37
  • 187 Abdi SN, Ghotaslou R, Ganbarov K. et al. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect Drug Resist 2020; 13: 423-434
  • 188 Shin B, Park C, Park W. Stress responses linked to antimicrobial resistance in Acinetobacter species. Appl Microbiol Biotechnol 2020; 104 (04) 1423-1435
  • 189 Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11: 2277-2299
  • 190 Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol 2011; 19 (12) 588-595
  • 191 Piana A, Palmieri A, Deidda S. et al. Molecular typing of XDR Acinetobacter baumannii strains in an Italian ICU. Epidemiol Prev 2015; 39 (4, Suppl 1): 129-133
  • 192 Gales AC, Pfaller MA, Sader HS, Hollis RJ, Jones RN. Genotypic characterization of carbapenem-nonsusceptible Acinetobacter spp. isolated in Latin America. Microb Drug Resist 2004; 10 (04) 286-291
  • 193 Nemec A, Dijkshoorn L, van der Reijden TJK. Long-term predominance of two pan-European clones among multi-resistant Acinetobacter baumannii strains in the Czech Republic. J Med Microbiol 2004; 53 (Pt 2): 147-153
  • 194 Vahaboglu H, Oztürk R, Aygün G. et al. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother 1997; 41 (10) 2265-2269
  • 195 Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35 (05) 736-755
  • 196 Runnegar N, Sidjabat H, Goh HM, Nimmo GR, Schembri MA, Paterson DL. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period. J Clin Microbiol 2010; 48 (11) 4051-4056
  • 197 Karah N, Sundsfjord A, Towner K, Samuelsen Ø. Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii . Drug Resist Updat 2012; 15 (04) 237-247
  • 198 Higgins PG, Dammhayn C, Hackel M, Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii . J Antimicrob Chemother 2010; 65 (02) 233-238
  • 199 Nemec A, Krízová L, Maixnerová M. et al. Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J Antimicrob Chemother 2008; 62 (03) 484-489
  • 200 Higgins PG, Janssen K, Fresen MM, Wisplinghoff H, Seifert H. Molecular epidemiology of Acinetobacter baumannii bloodstream isolates obtained in the United States from 1995 to 2004 using rep-PCR and multilocus sequence typing. J Clin Microbiol 2012; 50 (11) 3493-3500
  • 201 Zhao Y, Hu K, Zhang J. et al. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in ICU of the eastern Heilongjiang Province, China. BMC Infect Dis 2019; 19 (01) 452
  • 202 Go ES, Urban C, Burns J. et al. Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet 1994; 344 (8933): 1329-1332
  • 203 Manikal VM, Landman D, Saurina G, Oydna E, Lal H, Quale J. Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: citywide prevalence, interinstitutional spread, and relation to antibiotic usage. Clin Infect Dis 2000; 31 (01) 101-106
  • 204 Lee SO, Kim NJ, Choi SH. et al. Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: a case-control study. Antimicrob Agents Chemother 2004; 48 (01) 224-228
  • 205 Yang P, Chen Y, Jiang S, Shen P, Lu X, Xiao Y. Association between antibiotic consumption and the rate of carbapenem-resistant Gram-negative bacteria from China based on 153 tertiary hospitals data in 2014. Antimicrob Resist Infect Control 2018; 7: 137
  • 206 Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006; 12 (09) 826-836
  • 207 Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 2017; 43 (01) 43-61
  • 208 Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54 (03) 969-976
  • 209 Mehrad B, Clark NM, Zhanel GG, Lynch III JP. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest 2015; 147 (05) 1413-1421
  • 210 Jacoby GA, Munoz-Price LS. The new beta-lactamases. N Engl J Med 2005; 352 (04) 380-391
  • 211 Chong Y, Ito Y, Kamimura T. Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae . Infect Genet Evol 2011; 11 (07) 1499-1504
  • 212 Livermore DM, Canton R, Gniadkowski M. et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007; 59 (02) 165-174
  • 213 Lynch III JP, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin Pharmacother 2013; 14 (02) 199-210
  • 214 Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, Nordmann P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother 1999; 43 (03) 573-581
  • 215 Poirel L, Karim A, Mercat A. et al. Extended-spectrum beta-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J Antimicrob Chemother 1999; 43 (01) 157-158
  • 216 Naas T, Coignard B, Carbonne A. et al; French Nosocomial Infection Early Warning Investigation and Surveillance Network. VEB-1 extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis 2006; 12 (08) 1214-1222
  • 217 Naas T, Bogaerts P, Bauraing C, Degheldre Y, Glupczynski Y, Nordmann P. Emergence of PER and VEB extended-spectrum beta-lactamases in Acinetobacter baumannii in Belgium. J Antimicrob Chemother 2006; 58 (01) 178-182
  • 218 Pasterán F, Rapoport M, Petroni A. et al. Emergence of PER-2 and VEB-1a in Acinetobacter baumannii strains in the Americas. Antimicrob Agents Chemother 2006; 50 (09) 3222-3224
  • 219 Shakil S, Khan AU. Detection of CTX-M-15-producing and carbapenem-resistant Acinetobacter baumannii strains from urine from an Indian hospital. J Chemother 2010; 22 (05) 324-327
  • 220 Potron A, Munoz-Price LS, Nordmann P, Cleary T, Poirel L. Genetic features of CTX-M-15-producing Acinetobacter baumannii from Haiti. Antimicrob Agents Chemother 2011; 55 (12) 5946-5948
  • 221 Zago MC, Viana GF, Ecker AB. et al. First report of CTX-M-15-producing Acinetobacter baumannii in Brazil. J Hosp Infect 2016; 92 (03) 298-299
  • 222 Yong D, Toleman MA, Giske CG. et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53 (12) 5046-5054
  • 223 Berrazeg M, Diene S, Medjahed L. et al. New Delhi metallo-beta-lactamase around the world: an eReview using Google Maps. Euro Surveill 2014; 19 (20) 19
  • 224 Bonnin RA, Nordmann P, Potron A, Lecuyer H, Zahar JR, Poirel L. Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii . Antimicrob Agents Chemother 2011; 55 (01) 349-354
  • 225 Bogaerts P, Naas T, El Garch F. et al. GES extended-spectrum β-lactamases in Acinetobacter baumannii isolates in Belgium. Antimicrob Agents Chemother 2010; 54 (11) 4872-4878
  • 226 Chihi H, Bonnin RA, Bourouis A. et al. GES-11-producing Acinetobacter baumannii clinical isolates from Tunisian hospitals: long-term dissemination of GES-type carbapenemases in North Africa. J Glob Antimicrob Resist 2016; 5: 47-50
  • 227 Charfi-Kessis K, Mansour W, Ben Haj Khalifa A. et al. Multidrug-resistant Acinetobacter baumannii strains carrying the bla(OxA-23) and the bla(GES-11) genes in a neonatology center in Tunisia. Microb Pathog 2014; 74: 20-24
  • 228 Pagano M, Barin J, Martins AF, Zavascki AP. High endemic rates of OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolates caused by the persistence of major clones in hospitals in a Brazilian city 5 years after an outbreak. Infect Control Hosp Epidemiol 2015; 36 (07) 860-862
  • 229 Hujer AM, Hujer KM, Leonard DA. et al; Antibacterial Resistance Leadership Group (ARLG). A comprehensive and contemporary “snapshot” of β-lactamases in carbapenem resistant Acinetobacter baumannii . Diagn Microbiol Infect Dis 2021; 99 (02) 115242
  • 230 Paton R, Miles RS, Hood J, Amyes SG, Miles RS, Amyes SG. ARI 1: beta-lactamase-mediated imipenem resistance in Acinetobacter baumannii . Int J Antimicrob Agents 1993; 2 (02) 81-87
  • 231 Dias VC, Diniz CG, Peter AC. et al. Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil. J Infect Dev Ctries 2016; 10 (06) 544-553
  • 232 Coelho JM, Turton JF, Kaufmann ME. et al. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J Clin Microbiol 2006; 44 (10) 3623-3627
  • 233 Xu A, Zheng B, Xu YC, Huang ZG, Zhong NS, Zhuo C. National epidemiology of carbapenem-resistant and extensively drug-resistant Gram-negative bacteria isolated from blood samples in China in 2013. Clin Microbiol Infect 2016; 22 (Suppl. 01) S1-S8
  • 234 Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii . Antimicrob Agents Chemother 2005; 49 (01) 202-208
  • 235 Fu Y, Jiang J, Zhou H. et al. Characterization of a novel plasmid type and various genetic contexts of bla OXA-58 in Acinetobacter spp. from multiple cities in China. PLoS One 2014; 9 (01) e84680
  • 236 Merino M, Poza M, Roca I. et al. Nosocomial outbreak of a multiresistant Acinetobacter baumannii expressing OXA-23 carbapenemase in Spain. Microb Drug Resist 2014; 20 (04) 259-263
  • 237 Adams-Haduch JM, Onuoha EO, Bogdanovich T. et al. Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J Clin Microbiol 2011; 49 (11) 3849-3854
  • 238 Mezzatesta ML, Caio C, Gona F. et al. Carbapenem and multidrug resistance in Gram-negative bacteria in a single centre in Italy: considerations on in vitro assay of active drugs. Int J Antimicrob Agents 2014; 44 (02) 112-116
  • 239 Correa A, Del Campo R, Escandón-Vargas K. et al. Distinct genetic diversity of carbapenem-resistant Acinetobacter baumannii from Colombian Hospitals. Microb Drug Resist 2018; 24 (01) 48-54
  • 240 Labarca JA, Salles MJ, Seas C, Guzmán-Blanco M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Crit Rev Microbiol 2016; 42 (02) 276-292
  • 241 Levy-Blitchtein S, Roca I, Plasencia-Rebata S. et al. Emergence and spread of carbapenem-resistant Acinetobacter baumannii international clones II and III in Lima, Peru. Emerg Microbes Infect 2018; 7 (01) 119
  • 242 Yigit H, Queenan AM, Anderson GJ. et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae . Antimicrob Agents Chemother 2001; 45 (04) 1151-1161
  • 243 Bradford PA, Bratu S, Urban C. et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 2004; 39 (01) 55-60
  • 244 Naas T, Nordmann P, Vedel G, Poyart C. Plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother 2005; 49 (10) 4423-4424
  • 245 Baraniak A, Izdebski R, Fiett J. et al; MOSAR WP2, WP3, and WP5 Study Groups. KPC-like carbapenemase-producing Enterobacteriaceae colonizing patients in Europe and Israel. Antimicrob Agents Chemother 2015; 60 (03) 1912-1917
  • 246 Martinez T, Martinez I, Vazquez GJ, Aquino EE, Robledo IE. Genetic environment of the KPC gene in Acinetobacter baumannii ST2 clone from Puerto Rico and genomic insights into its drug resistance. J Med Microbiol 2016; 65 (08) 784-792
  • 247 Robledo IE, Aquino EE, Santé MI. et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother 2010; 54 (03) 1354-1357
  • 248 Moubareck C, Brémont S, Conroy MC, Courvalin P, Lambert T. GES-11, a novel integron-associated GES variant in Acinetobacter baumannii . Antimicrob Agents Chemother 2009; 53 (08) 3579-3581
  • 249 Bonnin RA, Rotimi VO, Al Hubail M. et al. Wide dissemination of GES-type carbapenemases in Acinetobacter baumannii isolates in Kuwait. Antimicrob Agents Chemother 2013; 57 (01) 183-188
  • 250 Cicek AC, Saral A, Iraz M. et al. OXA- and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin Microbiol Infect 2014; 20 (05) 410-415
  • 251 Bonnin RA, Poirel L, Naas T. et al. Dissemination of New Delhi metallo-β-lactamase-1-producing Acinetobacter baumannii in Europe. Clin Microbiol Infect 2012; 18 (09) E362-E365
  • 252 Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob Agents Chemother 2011; 55 (03) 1274-1278
  • 253 Moellering Jr RC. NDM-1 – a cause for worldwide concern. N Engl J Med 2010; 363 (25) 2377-2379
  • 254 Poirel L, Hombrouck-Alet C, Freneaux C, Bernabeu S, Nordmann P. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect Dis 2010; 10 (12) 832
  • 255 Hammerum AM, Larsen AR, Hansen F. et al. Patients transferred from Libya to Denmark carried OXA-48-producing Klebsiella pneumoniae, NDM-1-producing Acinetobacter baumannii and meticillin-resistant Staphylococcus aureus . Int J Antimicrob Agents 2012; 40 (02) 191-192
  • 256 El-Sayed-Ahmed MA, Amin MA, Tawakol WM, Loucif L, Bakour S, Rolain JM. High prevalence of bla(NDM-1) carbapenemase-encoding gene and 16S rRNA armA methyltransferase gene among Acinetobacter baumannii clinical Isolates in Egypt. Antimicrob Agents Chemother 2015; 59 (06) 3602-3605
  • 257 Pfeifer Y, Wilharm G, Zander E. et al. Molecular characterization of blaNDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J Antimicrob Chemother 2011; 66 (09) 1998-2001
  • 258 Ghazawi A, Sonnevend A, Bonnin RA. et al. NDM-2 carbapenemase-producing Acinetobacter baumannii in the United Arab Emirates. Clin Microbiol Infect 2012; 18 (02) E34-E36
  • 259 Espinal P, Fugazza G, López Y. et al. Dissemination of an NDM-2-producing Acinetobacter baumannii clone in an Israeli rehabilitation center. Antimicrob Agents Chemother 2011; 55 (11) 5396-5398
  • 260 El-Herte RI, Kanj SS, Matar GM, Araj GF. The threat of carbapenem-resistant Enterobacteriaceae in Lebanon: an update on the regional and local epidemiology. J Infect Public Health 2012; 5 (03) 233-243
  • 261 Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother 2011; 66 (06) 1260-1262
  • 262 Bonnin RA, Poirel L, Nordmann P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol 2014; 9 (01) 33-41
  • 263 Khorsi K, Messai Y, Hamidi M, Ammari H, Bakour R. High prevalence of multidrug-resistance in Acinetobacter baumannii and dissemination of carbapenemase-encoding genes blaOXA-23-like, blaOXA-24-like and blaNDM-1 in Algiers hospitals. Asian Pac J Trop Med 2015; 8 (06) 438-446
  • 264 Mathlouthi N, El Salabi AA, Ben Jomàa-Jemili M. et al. Early detection of metallo-β-lactamase NDM-1- and OXA-23 carbapenemase-producing Acinetobacter baumannii in Libyan hospitals. Int J Antimicrob Agents 2016; 48 (01) 46-50
  • 265 Decousser JW, Jansen C, Nordmann P. et al. Outbreak of NDM-1-producing Acinetobacter baumannii in France, January to May 2013. Euro Surveill 2013; 18 (31) 18
  • 266 Boulanger A, Naas T, Fortineau N, Figueiredo S, Nordmann P. NDM-1-producing Acinetobacter baumannii from Algeria. Antimicrob Agents Chemother 2012; 56 (04) 2214-2215
  • 267 Poirel L, Revathi G, Bernabeu S, Nordmann P. Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother 2011; 55 (02) 934-936
  • 268 Zhang R, Hu YY, Yang XF. et al. Emergence of NDM-producing non-baumannii Acinetobacter spp. isolated from China. Eur J Clin Microbiol Infect Dis 2014; 33 (05) 853-860
  • 269 Huang YM, Zhong LL, Zhang XF. et al. NDM-1-producing Citrobacter freundii, Escherichia coli, and Acinetobacter baumannii identified from a single patient in China. Antimicrob Agents Chemother 2015; 59 (08) 5073-5077
  • 270 Nakazawa Y, Ii R, Tamura T. et al. A case of NDM-1-producing Acinetobacter baumannii transferred from India to Japan. J Infect Chemother 2013; 19 (02) 330-332
  • 271 Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother 2011; 66 (06) 1255-1259
  • 272 Yang J, Chen Y, Jia X. et al. Dissemination and characterization of NDM-1-producing Acinetobacter pittii in an intensive care unit in China. Clin Microbiol Infect 2012; 18 (12) E506-E513
  • 273 Rahman M, Prasad KN, Gupta S. et al. Prevalence and molecular characterization of New Delhi metallo-beta-lactamases in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from India. Microb Drug Resist 2018; 24 (06) 792-798
  • 274 Lukovic B, Gajic I, Dimkic I. et al. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob Resist Infect Control 2020; 9 (01) 101
  • 275 Bushnell G, Mitrani-Gold F, Mundy LM. Emergence of New Delhi metallo-β-lactamase type 1-producing Enterobacteriaceae and non-Enterobacteriaceae: global case detection and bacterial surveillance. Int J Infect Dis 2013; 17 (05) e325-e333
  • 276 Islam MA, Islam M, Hasan R. et al. Environmental spread of New Delhi metallo-β-lactamase-1-producing multidrug-resistant bacteria in Dhaka, Bangladesh. Appl Environ Microbiol 2017; 83 (15) e00793-e17
  • 277 Xanthopoulou K, Carattoli A, Wille J. et al. Antibiotic resistance and mobile genetic elements in extensively drug-resistant Klebsiella pneumoniae sequence type 147 recovered from Germany. Antibiotics (Basel) 2020; 9 (10) 675
  • 278 Principe L, Mauri C, Conte V. et al. First report of NDM-1-producing Klebsiella pneumoniae imported from Africa to Italy: evidence of the need for continuous surveillance. J Glob Antimicrob Resist 2017; 8: 23-27
  • 279 Dziri O, Dziri R, Ali El Salabi A, Chouchani C. Carbapenemase producing gram-negative bacteria in Tunisia: history of thirteen years of challenge. Infect Drug Resist 2020; 13: 4177-4191
  • 280 Pagano M, Poirel L, Martins AF. et al. Emergence of NDM-1-producing Acinetobacter pittii in Brazil. Int J Antimicrob Agents 2015; 45 (04) 444-445
  • 281 Brasiliense D, Cayô R, Streling AP. et al. Diversity of metallo-β-lactamase-encoding genes found in distinct species of Acinetobacter isolated from the Brazilian Amazon Region. Mem Inst Oswaldo Cruz 2019; 114: e190020
  • 282 Pillonetto M, Arend L, Vespero EC. et al. First report of NDM-1-producing Acinetobacter baumannii sequence type 25 in Brazil. Antimicrob Agents Chemother 2014; 58 (12) 7592-7594
  • 283 Pasteran F, Mora MM, Albornoz E. et al. Emergence of genetically unrelated NDM-1-producing Acinetobacter pittii strains in Paraguay. J Antimicrob Chemother 2014; 69 (09) 2575-2578
  • 284 Montaña S, Cittadini R, Del Castillo M. et al. Presence of New Delhi metallo-β-lactamase gene (NDM-1) in a clinical isolate of Acinetobacter junii in Argentina. New Microbes New Infect 2016; 11: 43-44
  • 285 Waterman PE, McGann P, Snesrud E. et al. Bacterial peritonitis due to Acinetobacter baumannii sequence type 25 with plasmid-borne new Delhi metallo-β-lactamase in Honduras. Antimicrob Agents Chemother 2013; 57 (09) 4584-4586
  • 286 Munoz-Price LS, Arheart K, Nordmann P. et al. Eighteen years of experience with Acinetobacter baumannii in a tertiary care hospital. Crit Care Med 2013; 41 (12) 2733-2742
  • 287 Lashinsky JN, Henig O, Pogue JM, Kaye KS. Minocycline for the treatment of multidrug and extensively drug-resistant A. baumannii: a review. Infect Dis Ther 2017; 6 (02) 199-211
  • 288 Kim Y, Bae IK, Lee H, Jeong SH, Yong D, Lee K. In vivo emergence of colistin resistance in Acinetobacter baumannii clinical isolates of sequence type 357 during colistin treatment. Diagn Microbiol Infect Dis 2014; 79 (03) 362-366
  • 289 Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012; 67 (07) 1607-1615
  • 290 Weiner LM, Webb AK, Limbago B. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol 2016; 37 (11) 1288-1301
  • 291 Sanchez DG, de Melo FM, Savazzi EA, Stehling EG. Detection of different β-lactamases encoding genes, including blaNDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil. Environ Monit Assess 2018; 190 (07) 407
  • 292 Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis 2009; 65 (04) 414-426
  • 293 Mera RM, Miller LA, Amrine-Madsen H, Sahm DF. Acinetobacter baumannii 2002-2008: increase of carbapenem-associated multiclass resistance in the United States. Microb Drug Resist 2010; 16 (03) 209-215
  • 294 Queenan AM, Pillar CM, Deane J. et al. Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: results from CAPITAL Surveillance 2010. Diagn Microbiol Infect Dis 2012; 73 (03) 267-270
  • 295 Denys GA, Callister SM, Dowzicky MJ. Antimicrobial susceptibility among gram-negative isolates collected in the USA between 2005 and 2011 as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.). Ann Clin Microbiol Antimicrob 2013; 12: 24
  • 296 Weiner-Lastinger LM, Abner S, Edwards JR. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015-2017. Infect Control Hosp Epidemiol 2020; 41 (01) 1-18
  • 297 Jones RN, Guzman-Blanco M, Gales AC. et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis 2013; 17 (06) 672-681
  • 298 Lee MH, Chen TL, Lee YT. et al. Dissemination of multidrug-resistant Acinetobacter baumannii carrying BlaOxA-23 from hospitals in central Taiwan. J Microbiol Immunol Infect 2013; 46 (06) 419-424
  • 299 Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2017; 30 (01) 1-22
  • 300 Mohd Rani F, A Rahman NI, Ismail S. et al. Acinetobacter spp. infections in Malaysia: a review of antimicrobial resistance trends, mechanisms and epidemiology. Front Microbiol 2017; 8: 2479
  • 301 Mortazavi SM, Farshadzadeh Z, Janabadi S. et al. Evaluating the frequency of carbapenem and aminoglycoside resistance genes among clinical isolates of Acinetobacter baumannii from Ahvaz, south-west Iran. New Microbes New Infect 2020; 38: 100779
  • 302 Nordmann P, Picazo JJ, Mutters R. et al; COMPACT Study Group. Comparative activity of carbapenem testing: the COMPACT study. J Antimicrob Chemother 2011; 66 (05) 1070-1078
  • 303 Alvarez-Uria G, Midde M. Trends and factors associated with antimicrobial resistance of Acinetobacter spp. invasive isolates in Europe: a country-level analysis. J Glob Antimicrob Resist 2018; 14: 29-32
  • 304 Wareham DW, Bean DC, Khanna P. et al. Bloodstream infection due to Acinetobacter spp: epidemiology, risk factors and impact of multi-drug resistance. Eur J Clin Microbiol Infect Dis 2008; 27 (07) 607-612
  • 305 Voulgari E, Politi L, Pitiriga V. et al. First report of an NDM-1 metallo-β-lactamase-producing Acinetobacter baumannii clinical isolate in Greece. Int J Antimicrob Agents 2016; 48 (06) 761-762
  • 306 Aşik G, Özdemir M, Kurtoğlu MG. et al. Detection of the frequency of PER-1 type extended-spectrum β-lactamase-producing Acinetobacter baumannii clinical isolates in Turkey: a multicenter study. Turk J Med Sci 2014; 44 (06) 1041-1046
  • 307 Ibrahim ME. Prevalence of Acinetobacter baumannii in Saudi Arabia: risk factors, antimicrobial resistance patterns and mechanisms of carbapenem resistance. Ann Clin Microbiol Antimicrob 2019; 18 (01) 1
  • 308 Abdalhamid B, Hassan H, Itbaileh A, Shorman M. Characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates in a tertiary care hospital in Saudi Arabia. New Microbiol 2014; 37 (01) 65-73
  • 309 Alyamani EJ, Khiyami MA, Booq RY, Alnafjan BM, Altammami MA, Bahwerth FS. Molecular characterization of extended-spectrum beta-lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii in Saudi Arabia. Ann Clin Microbiol Antimicrob 2015; 14: 38
  • 310 Nasiri MJ, Zamani S, Fardsanei F. et al. Prevalence and mechanisms of carbapenem resistance in Acinetobacter baumannii: a comprehensive systematic review of cross-sectional studies from Iran. Microb Drug Resist 2020; 26 (03) 270-283
  • 311 Kim DH, Choi JY, Kim HW. et al. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands. Antimicrob Agents Chemother 2013; 57 (11) 5239-5246
  • 312 Fu Y, Zhou J, Zhou H. et al. Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother 2010; 65 (04) 644-650
  • 313 Kindu M, Derseh L, Gelaw B, Moges F. Carbapenemase-producing non-glucose-fermenting gram-negative bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: a systematic review and meta-analysis. Int J Microbiol 2020; 2020: 9461901
  • 314 Tadesse BT, Ashley EA, Ongarello S. et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis 2017; 17 (01) 616
  • 315 Sekyere JO, Govinden U, Essack S. The molecular epidemiology and genetic environment of carbapenemases detected in Africa. Microb Drug Resist 2016; 22 (01) 59-68
  • 316 Lowe M, Ehlers MM, Ismail F. et al. Acinetobacter baumannii: epidemiological and beta-lactamase data from two tertiary academic hospitals in Tshwane, South Africa. Front Microbiol 2018; 9: 1280
  • 317 El Bannah AMS, Nawar NN, Hassan RMM, Salem STB. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in a tertiary care hospital in Egypt: clonal spread of blaOXA-23. Microb Drug Resist 2018; 24 (03) 269-277
  • 318 Abouelfetouh A, Torky AS, Aboulmagd E. Phenotypic and genotypic characterization of carbapenem-resistant Acinetobacter baumannii isolates from Egypt. Antimicrob Resist Infect Control 2019; 8: 185
  • 319 Vazquez Guillamet C, Kollef MH. Acinetobacter pneumonia: improving outcomes with early identification and appropriate therapy. Clin Infect Dis 2018; 67 (09) 1455-1462
  • 320 Oliveira MS, Prado GV, Costa SF, Grinbaum RS, Levin AS. Ampicillin/sulbactam compared with polymyxins for the treatment of infections caused by carbapenem-resistant Acinetobacter spp. J Antimicrob Chemother 2008; 61 (06) 1369-1375
  • 321 McLeod SM, Moussa SH, Hackel MA, Miller AA. In vitro activity of sulbactam-durlobactam against Acinetobacter baumannii-calcoaceticus complex isolates collected globally in 2016 and 2017. Antimicrob Agents Chemother 2020; 64 (04) e02534-e19
  • 322 Brotfain E, Borer A, Koyfman L. et al. Multidrug resistance Acinetobacter bacteremia secondary to ventilator-associated pneumonia: risk factors and outcome. J Intensive Care Med 2017; 32 (09) 528-534
  • 323 Jaruratanasirikul S, Wongpoowarak W, Aeinlang N, Jullangkoon M. Pharmacodynamics modeling to optimize dosage regimens of sulbactam. Antimicrob Agents Chemother 2013; 57 (07) 3441-3444
  • 324 Betrosian AP, Frantzeskaki F, Xanthaki A, Douzinas EE. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J Infect 2008; 56 (06) 432-436
  • 325 Laishram S, Anandan S, Devi BY. et al. Determination of synergy between sulbactam, meropenem and colistin in carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii isolates and correlation with the molecular mechanism of resistance. J Chemother 2016; 28 (04) 297-303
  • 326 Yang Y, Fu Y, Lan P. et al. Molecular epidemiology and mechanism of sulbactam resistance in Acinetobacter baumannii isolates with diverse genetic backgrounds in China. Antimicrob Agents Chemother 2018; 62 (03) 62
  • 327 Hiraki Y, Yoshida M, Masuda Y. et al. Successful treatment of skin and soft tissue infection due to carbapenem-resistant Acinetobacter baumannii by ampicillin-sulbactam and meropenem combination therapy. Int J Infect Dis 2013; 17 (12) e1234-e1236
  • 328 Jaidane N, Naas T, Mansour W. et al. Genomic analysis of in vivo acquired resistance to colistin and rifampicin in Acinetobacter baumannii . Int J Antimicrob Agents 2018; 51 (02) 266-269
  • 329 Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese?. Clin Infect Dis 2014; 59 (01) 88-94
  • 330 Lesho EP, Waterman PE, Chukwuma U. et al. The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance. Clin Infect Dis 2014; 59 (03) 390-397
  • 331 Göttig S, Gruber TM, Higgins PG, Wachsmuth M, Seifert H, Kempf VA. Detection of pan drug-resistant Acinetobacter baumannii in Germany. J Antimicrob Chemother 2014; 69 (09) 2578-2579
  • 332 Pogue JM, Lee J, Marchaim D. et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis 2011; 53 (09) 879-884
  • 333 Leporati M, Bua RO, Mariano F. et al. Determination by LC-MS/MS of colistins A and B in plasma and ultrafiltrate from critically ill patients undergoing continuous venovenous hemodiafiltration. Ther Drug Monit 2014; 36 (02) 182-191
  • 334 De Pascale G, Montini L, Pennisi M. et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care 2014; 18 (03) R90
  • 335 Rao GG, Ly NS, Bulitta JB. et al. Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies. J Antimicrob Chemother 2016; 71 (11) 3148-3156
  • 336 Cheah SE, Li J, Tsuji BT, Forrest A, Bulitta JB, Nation RL. Colistin and polymyxin B dosage regimens against Acinetobacter baumannii: differences in activity and the emergence of resistance. Antimicrob Agents Chemother 2016; 60 (07) 3921-3933
  • 337 Cheah SE, Johnson MD, Zhu Y. et al. Polymyxin resistance in Acinetobacter baumannii: genetic mutations and transcriptomic changes in response to clinically relevant dosage regimens. Sci Rep 2016; 6: 26233
  • 338 Garnacho J, Sole-Violan J, Sa-Borges M, Diaz E, Rello J. Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients: a matched cohort study. Crit Care Med 2003; 31 (10) 2478-2482
  • 339 Batirel A, Balkan II, Karabay O. et al. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur J Clin Microbiol Infect Dis 2014; 33 (08) 1311-1322
  • 340 López-Cortés LE, Cisneros JM, Fernández-Cuenca F. et al; GEIH/REIPI-Ab2010 Group. Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: analysis of a multicentre prospective cohort. J Antimicrob Chemother 2014; 69 (11) 3119-3126
  • 341 Shields RK, Clancy CJ, Gillis LM. et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One 2012; 7 (12) e52349
  • 342 Paul M, Daikos GL, Durante-Mangoni E. et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis 2018; 18 (04) 391-400
  • 343 Dickstein Y, Lellouche J, Ben Dalak Amar M. et al; AIDA Study Group. Treatment outcomes of colistin- and carbapenem-resistant Acinetobacter baumannii infections: an exploratory subgroup analysis of a randomized clinical trial. Clin Infect Dis 2019; 69 (05) 769-776
  • 344 Cheng A, Chuang YC, Sun HY. et al. Excess mortality associated with colistin-tigecycline compared with colistin-carbapenem combination therapy for extensively drug-resistant Acinetobacter baumannii bacteremia: a multicenter prospective observational study. Crit Care Med 2015; 43 (06) 1194-1204
  • 345 Hong DJ, Kim JO, Lee H. et al. In vitro antimicrobial synergy of colistin with rifampicin and carbapenems against colistin-resistant Acinetobacter baumannii clinical isolates. Diagn Microbiol Infect Dis 2016; 86 (02) 184-189
  • 346 Park GC, Choi JA, Jang SJ. et al. In vitro interactions of antibiotic combinations of colistin, tigecycline, and doripenem against extensively drug-resistant and multidrug-resistant Acinetobacter baumannii . Ann Lab Med 2016; 36 (02) 124-130
  • 347 Liu X, Zhao M, Chen Y. et al. Synergistic killing by meropenem and colistin combination of carbapenem-resistant Acinetobacter baumannii isolates from Chinese patients in an in vitro pharmacokinetic/pharmacodynamic model. Int J Antimicrob Agents 2016; 48 (05) 559-563
  • 348 Kengkla K, Kongpakwattana K, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network meta-analysis. J Antimicrob Chemother 2018; 73 (01) 22-32
  • 349 Liu J, Shu Y, Zhu F. et al. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: a systematic review and network meta-analysis. J Glob Antimicrob Resist 2021; 24: 136-147
  • 350 Garnacho-Montero J, Amaya-Villar R, Gutiérrez-Pizarraya A. et al. Clinical efficacy and safety of the combination of colistin plus vancomycin for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii . Chemotherapy 2013; 59 (03) 225-231
  • 351 Petrosillo N, Giannella M, Antonelli M. et al. Clinical experience of colistin-glycopeptide combination in critically ill patients infected with Gram-negative bacteria. Antimicrob Agents Chemother 2014; 58 (02) 851-858
  • 352 Liu YY, Wang Y, Walsh TR. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16 (02) 161-168
  • 353 Poirel L, Kieffer N, Liassine N, Thanh D, Nordmann P. Plasmid-mediated carbapenem and colistin resistance in a clinical isolate of Escherichia coli . Lancet Infect Dis 2016; 16 (03) 281
  • 354 Nordmann P, Lienhard R, Kieffer N, Clerc O, Poirel L. Plasmid-mediated colistin-resistant Escherichia coli in bacteremia in Switzerland. Clin Infect Dis 2016; 62 (10) 1322-1323
  • 355 Payne M, Croxen MA, Lee TD. et al. mcr-1-Positive colistin-resistant Escherichia coli in traveler returning to Canada from China. Emerg Infect Dis 2016; 22 (09) 1673-1675
  • 356 Teo JW, Chew KL, Lin RT. Transmissible colistin resistance encoded by mcr-1 detected in clinical Enterobacteriaceae isolates in Singapore. Emerg Microbes Infect 2016; 5 (08) e87
  • 357 Rolain JM, Roch A, Castanier M, Papazian L, Raoult D. Acinetobacter baumannii resistant to colistin with impaired virulence: a case report from France. J Infect Dis 2011; 204 (07) 1146-1147
  • 358 López-Rojas R, Domínguez-Herrera J, McConnell MJ. et al. Impaired virulence and in vivo fitness of colistin-resistant Acinetobacter baumannii . J Infect Dis 2011; 203 (04) 545-548
  • 359 Chen YM, Fang WF, Kao HC. et al. Influencing factors of successful eradication of multidrug-resistant Acinetobacter baumannii in the respiratory tract with aerosolized colistin. Biomed J 2014; 37 (05) 314-320
  • 360 Hussain K, Salat MS, Ambreen G. et al. Intravenous vs intravenous plus aerosolized colistin for treatment of ventilator-associated pneumonia - a matched case-control study in neonates. Expert Opin Drug Saf 2020; 19 (12) 1641-1649
  • 361 Vardakas KZ, Mavroudis AD, Georgiou M, Falagas ME. Intravenous plus inhaled versus intravenous colistin monotherapy for lower respiratory tract infections: a systematic review and meta-analysis. J Infect 2018; 76 (04) 321-327
  • 362 Wood GC, Swanson JM. An update on aerosolized antibiotics for treating hospital-acquired and ventilator-associated pneumonia in adults. Ann Pharmacother 2017; 51 (12) 1112-1121
  • 363 Choe J, Sohn YM, Jeong SH. et al. Inhalation with intravenous loading dose of colistin in critically ill patients with pneumonia caused by carbapenem-resistant gram-negative bacteria. Ther Adv Respir Dis 2019; 13: 1753466619885529
  • 364 Shankar C, Nabarro LEB, Anandan S, Veeraraghavan B. Minocycline and tigecycline: what is their role in the treatment of carbapenem-resistant gram-negative organisms?. Microb Drug Resist 2017; 23 (04) 437-446
  • 365 Falagas ME, Vardakas KZ, Kapaskelis A, Triarides NA, Roussos NS. Tetracyclines for multidrug-resistant Acinetobacter baumannii infections. Int J Antimicrob Agents 2015; 45 (05) 455-460
  • 366 Castanheira M, Mendes RE, Jones RN. Update on Acinetobacter species: mechanisms of antimicrobial resistance and contemporary in vitro activity of minocycline and other treatment options. Clin Infect Dis 2014; 59 (Suppl. 06) S367-S373
  • 367 Qureshi ZA, Hittle LE, O'Hara JA. et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis 2015; 60 (09) 1295-1303
  • 368 Hua X, Chen Q, Li X, Yu Y. Global transcriptional response of Acinetobacter baumannii to a subinhibitory concentration of tigecycline. Int J Antimicrob Agents 2014; 44 (04) 337-344
  • 369 Hoban DJ, Reinert RR, Bouchillon SK, Dowzicky MJ. Global in vitro activity of tigecycline and comparator agents: tigecycline evaluation and surveillance trial 2004-2013. Ann Clin Microbiol Antimicrob 2015; 14: 27
  • 370 Qin Y, Zhang J, Wu L, Zhang D, Fu L, Xue X. Comparison of the treatment efficacy between tigecycline plus high-dose cefoperazone-sulbactam and tigecycline monotherapy against ventilator-associated pneumonia caused by extensively drug-resistant Acinetobacter baumannii . Int J Clin Pharmacol Ther 2018; 56 (03) 120-129
  • 371 Ku K, Pogue JM, Moshos J. et al. Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. Am J Infect Control 2012; 40 (10) 983-987
  • 372 Lee YT, Tsao SM, Hsueh PR. Clinical outcomes of tigecycline alone or in combination with other antimicrobial agents for the treatment of patients with healthcare-associated multidrug-resistant Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis 2013; 32 (09) 1211-1220
  • 373 Freire AT, Melnyk V, Kim MJ. et al; 311 Study Group. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2010; 68 (02) 140-151
  • 374 Chuang YC, Cheng CY, Sheng WH. et al. Effectiveness of tigecycline-based versus colistin- based therapy for treatment of pneumonia caused by multidrug-resistant Acinetobacter baumannii in a critical setting: a matched cohort analysis. BMC Infect Dis 2014; 14: 102
  • 375 Ye JJ, Lin HS, Yeh CF. et al. Tigecycline-based versus sulbactam-based treatment for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. BMC Infect Dis 2016; 16: 374
  • 376 Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 2012; 54 (12) 1699-1709
  • 377 Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, Quale J. Activity of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including multidrug-resistant isolates, from New York City. Antimicrob Agents Chemother 2015; 59 (03) 1802-1805
  • 378 Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii . Antimicrob Agents Chemother 2016; 60 (06) 3840-3844
  • 379 Seifert H, Stefanik D, Sutcliffe JA, Higgins PG. In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii . Int J Antimicrob Agents 2018; 51 (01) 62-64
  • 380 Abdul-Mutakabbir JC, Alosaimy S, Morrisette T, Kebriaei R, Rybak MJ. Cefiderocol: a novel siderophore cephalosporin against multidrug-resistant gram-negative pathogens. Pharmacotherapy 2020; 40 (12) 1228-1247
  • 381 Iregui A, Khan Z, Landman D, Quale J. Activity of cefiderocol against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii endemic to medical centers in New York City. Microb Drug Resist 2020; 26 (07) 722-726
  • 382 Falcone M, Tiseo G, Nicastro M. et al. Cefiderocol as rescue therapy for Acinetobacter baumannii and other carbapenem-resistant gram-negative infections in ICU patients. Clin Infect Dis 2021; 72 (11) 2021-2024
  • 383 Russo A, Bassetti M, Bellelli V. et al. Efficacy of a fosfomycin-containing regimen for treatment of severe pneumonia caused by multidrug-resistant Acinetobacter baumannii: a prospective, observational study. Infect Dis Ther 2021; 10 (01) 187-200
  • 384 Zhao J, Han ML, Zhu Y. et al. Comparative metabolomics reveals key pathways associated with the synergistic activity of polymyxin B and rifampicin combination against multidrug-resistant Acinetobacter baumannii . Biochem Pharmacol 2021; 184: 114400
  • 385 Aydemir H, Akduman D, Piskin N. et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 2013; 141 (06) 1214-1222
  • 386 Durante-Mangoni E, Signoriello G, Andini R. et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 57 (03) 349-358
  • 387 Attia NM, Elbaradei A. Fluoroquinolone resistance conferred by gyrA, parC mutations, and AbaQ efflux pump among Acinetobacter baumannii clinical isolates causing ventilator-associated pneumonia. Acta Microbiol Immunol Hung 2019; 67 (04) 234-238
  • 388 Upadhyay S, Khyriem AB, Bhattacharya P, Bhattacharjee A, Joshi SR. High-level aminoglycoside resistance in Acinetobacter baumannii recovered from Intensive Care Unit patients in Northeastern India. Indian J Med Microbiol 2018; 36 (01) 43-48
  • 389 Salimizand H, Zomorodi AR, Mansury D. et al. Diversity of aminoglycoside modifying enzymes and 16S rRNA methylases in Acinetobacter baumannii and Acinetobacter nosocomialis species in Iran; wide distribution of aadA1 and armA. Infect Genet Evol 2018; 66: 195-199
  • 390 Buisson Y, Tran Van Nhieu G, Ginot L. et al. Nosocomial outbreaks due to amikacin-resistant tobramycin-sensitive Acinetobacter species: correlation with amikacin usage. J Hosp Infect 1990; 15 (01) 83-93
  • 391 Lesho E, Chukwuma U, Sparks M. et al. Anatomic, geographic, and taxon-specific relative risks of carbapenem resistance in the health care system of the U.S. Department of Defense. J Clin Microbiol 2016; 54 (06) 1546-1551
  • 392 Nemec A, Dolzani L, Brisse S, van den Broek P, Dijkshoorn L. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. J Med Microbiol 2004; 53 (Pt 12): 1233-1240
  • 393 Isler B, Doi Y, Bonomo RA, Paterson DL. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother 2018; 63 (01) e01110-e01118
  • 394 Piperaki ET, Tzouvelekis LS, Miriagou V, Daikos GL. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin Microbiol Infect 2019; 25 (08) 951-957
  • 395 Bassetti M, Ginocchio F, Mikulska M, Taramasso L, Giacobbe DR. Will new antimicrobials overcome resistance among Gram-negatives?. Expert Rev Anti Infect Ther 2011; 9 (10) 909-922
  • 396 Syue LS, Chen YH, Ko WC, Hsueh PR. New drugs for the treatment of complicated intra-abdominal infections in the era of increasing antimicrobial resistance. Int J Antimicrob Agents 2016; 47 (04) 250-258
  • 397 Higgins PG, Stefanik D, Page MG, Hackel M, Seifert H. In vitro activity of the siderophore monosulfactam BAL30072 against meropenem-non-susceptible Acinetobacter baumannii . J Antimicrob Chemother 2012; 67 (05) 1167-1169
  • 398 López-Rojas R, Sánchez-Céspedes J, Docobo-Pérez F, Domínguez-Herrera J, Vila J, Pachón J. Pre-clinical studies of a new quinolone (UB-8902) against Acinetobacter baumannii resistant to ciprofloxacin. Int J Antimicrob Agents 2011; 38 (04) 355-359
  • 399 Zhanel GG, Lawson CD, Adam H. et al. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 2013; 73 (02) 159-177
  • 400 Bassetti M, Righi E. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Curr Opin Crit Care 2015; 21 (05) 402-411
  • 401 van Duin D, Bonomo RA. Ceftazidime/Avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis 2016; 63 (02) 234-241
  • 402 Zhanel GG, Chung P, Adam H. et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014; 74 (01) 31-51
  • 403 García-Salguero C, Rodríguez-Avial I, Picazo JJ, Culebras E. Can plazomicin alone or in combination be a therapeutic option against carbapenem-resistant Acinetobacter baumannii?. Antimicrob Agents Chemother 2015; 59 (10) 5959-5966
  • 404 Zhanel GG, Lawson CD, Zelenitsky S. et al. Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther 2012; 10 (04) 459-473
  • 405 Bassetti M, Vena A, Castaldo N, Righi E, Peghin M. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis 2018; 31 (02) 177-186
  • 406 Jacobs MR, Bajaksouzian S, Good CE. et al. Novel bis-indole agents active against multidrug-resistant Acinetobacter baumannii . Diagn Microbiol Infect Dis 2011; 69 (01) 114-116
  • 407 Trzoss M, Bensen DC, Li X. et al. Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE), Part II: development of inhibitors with broad spectrum, Gram-negative antibacterial activity. Bioorg Med Chem Lett 2013; 23 (05) 1537-1543
  • 408 Yount NY, Yeaman MR. Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci 2013; 1277: 127-138
  • 409 Vila-Farres X, Garcia de la Maria C, López-Rojas R, Pachón J, Giralt E, Vila J. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii . Clin Microbiol Infect 2012; 18 (04) 383-387
  • 410 Schooley RT, Biswas B, Gill JJ. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 2017; 61 (10) e00954-e17
  • 411 LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis 2018; 5 (04) ofy064
  • 412 La Forgia C, Franke J, Hacek DM, Thomson Jr RB, Robicsek A, Peterson LR. Management of a multidrug-resistant Acinetobacter baumannii outbreak in an intensive care unit using novel environmental disinfection: a 38-month report. Am J Infect Control 2010; 38 (04) 259-263
  • 413 Mirhoseini SH, Nikaeen M, Shamsizadeh Z, Khanahmad H. Hospital air: a potential route for transmission of infections caused by β-lactam-resistant bacteria. Am J Infect Control 2016; 44 (08) 898-904
  • 414 Munoz-Price LS, Namias N, Cleary T. et al. Acinetobacter baumannii: association between environmental contamination of patient rooms and occupant status. Infect Control Hosp Epidemiol 2013; 34 (05) 517-520
  • 415 Łysakowska ME, Ciebiada-Adamiec A, Klimek L, Sienkiewicz M. The activity of silver nanoparticles (Axonnite) on clinical and environmental strains of Acinetobacter spp. Burns 2015; 41 (02) 364-371
  • 416 Martínez-Reséndez MF, Garza-González E, Mendoza-Olazaran S. et al. Impact of daily chlorhexidine baths and hand hygiene compliance on nosocomial infection rates in critically ill patients. Am J Infect Control 2014; 42 (07) 713-717