Semin Musculoskelet Radiol 2022; 26(04): 501-509
DOI: 10.1055/s-0042-1755392
Review Article

The Adolescent Spine

1   Department of Pediatric Imaging, Reine Fabiola Children's University Hospital, Université libre de Bruxelles, Brussels, Belgium
,
Giulia Negro
1   Department of Pediatric Imaging, Reine Fabiola Children's University Hospital, Université libre de Bruxelles, Brussels, Belgium
,
Marine Moeremans
1   Department of Pediatric Imaging, Reine Fabiola Children's University Hospital, Université libre de Bruxelles, Brussels, Belgium
,
1   Department of Pediatric Imaging, Reine Fabiola Children's University Hospital, Université libre de Bruxelles, Brussels, Belgium
› Author Affiliations

Abstract

Adolescent idiopathic scoliosis (AIS) is the most characteristic disorder of the adolescent spine. It is a three-dimensional (3D) disorder that occurs from 10 years of age and comprises 90% of all idiopathic scolioses. Imaging plays a central role in the diagnosis and follow-up of patients with AIS. Modern imaging offers 3D assessment of scoliosis with less radiation exposure. Imaging helps rule out occult conditions that cause spinal deformity. Various imaging methods are also used to assess skeletal maturity in patients with AIS, thus determining the growth spurt and risk of progression of scoliosis. This article provides a brief overview of the pathophysiology, biomechanics, clinical features, and modern imaging of AIS relevant to radiologists in clinical settings.



Publication History

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Choudhry MN, Ahmad Z, Verma R. Adolescent idiopathic scoliosis. Open Orthop J 2016; 10 (01) 143-154
  • 2 Stirling AJ, Howel D, Millner PA, Sadiq S, Sharples D, Dickson RA. Late-onset idiopathic scoliosis in children six to fourteen years old. A cross-sectional prevalence study. J Bone Joint Surg Am 1996; 78 (09) 1330-1336
  • 3 Riseborough EJ, Wynne-Davies R. A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 1973; 55 (05) 974-982
  • 4 Roach JW. Adolescent idiopathic scoliosis. Orthop Clin North Am 1999; 30 (03) 353-365 ; vii–viii
  • 5 Ovadia D. Classification of adolescent idiopathic scoliosis (AIS). J Child Orthop 2013; 7 (01) 25-28
  • 6 Lenke LG. Lenke classification system of adolescent idiopathic scoliosis: treatment recommendations. Instr Course Lect 2005; 54: 537-542
  • 7 Guglielmi R, Di Chio T, Kaleeta Maalu JP, Aparisi Gómez MP, De Leucio A, Simoni P. Preoperative and postoperative imaging in idiopathic scoliosis: what the surgeon wants to know. Semin Musculoskelet Radiol 2021; 25 (01) 155-166
  • 8 Kelly JJ, Shah NV, Freetly TJ. et al. Treatment of adolescent idiopathic scoliosis and evaluation of the adolescent patient. Curr Orthop Pract 2018; 29 (05) 424-429
  • 9 Cheng JC, Castelein RM, Chu WC. et al. Adolescent idiopathic scoliosis. Nat Rev Dis Primers 2015; 1: 15030
  • 10 Andersen MO, Thomsen K, Kyvik KO. Adolescent idiopathic scoliosis in twins: a population-based survey. Spine 2007; 32 (08) 927-930
  • 11 Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet 2008; 371 (9623): 1527-1537
  • 12 Axenovich TI, Zaidman AM, Zorkoltseva IV, Tregubova IL, Borodin PM. Segregation analysis of idiopathic scoliosis: demonstration of a major gene effect. Am J Med Genet 1999; 86 (04) 389-394
  • 13 Chan V, Fong GC, Luk KD. et al. A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet 2002; 71 (02) 401-406
  • 14 Gurnett CA, Alaee F, Bowcock A. et al. Genetic linkage localizes an adolescent idiopathic scoliosis and pectus excavatum gene to chromosome 18 q. Spine 2009; 34 (02) E94-E100
  • 15 Salehi LB, Mangino M, De Serio S. et al. Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet 2002; 111 (4-5): 401-404
  • 16 Ward K, Ogilvie J, Argyle V. et al. Polygenic inheritance of adolescent idiopathic scoliosis: a study of extended families in Utah. Am J Med Genet A 2010; 152A (05) 1178-1188
  • 17 Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 2013; 7 (01) 3-9
  • 18 Schlösser TP, Vincken KL, Rogers K, Castelein RM, Shah SA. Natural sagittal spino-pelvic alignment in boys and girls before, at and after the adolescent growth spurt. Eur Spine J 2015; 24 (06) 1158-1167
  • 19 Yim APY, Yeung HY, Hung VWY. et al. Abnormal skeletal growth patterns in adolescent idiopathic scoliosis—a longitudinal study until skeletal maturity. Spine 2012; 37 (18) E1148-E1154
  • 20 Kaced H, Hanene B, Haddouche A. Abnormal skeletal growth patterns in adolescent idiopathic scoliosis. Med Technol J 2017; 1 (04) 80-90
  • 21 Siu King Cheung C, Tak Keung Lee W, Kit Tse Y. et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine 2003; 28 (18) 2152-2157
  • 22 Addai D, Zarkos J, Bowey AJ. Current concepts in the diagnosis and management of adolescent idiopathic scoliosis. Childs Nerv Syst 2020; 36 (06) 1111-1119
  • 23 Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop 2012; 36 (03) 671-677
  • 24 Balioglu MB, Aydin C, Kargin D. et al. Vitamin-D measurement in patients with adolescent idiopathic scoliosis. J Pediatr Orthop B 2017; 26 (01) 48-52
  • 25 Stokes IA, Mente PL, Iatridis JC, Farnum CE, Aronsson DD. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading. J Bone Joint Surg Am 2002; 84 (10) 1842-1848
  • 26 Stokes IA. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation. Eur Spine J 2007; 16 (10) 1621-1628
  • 27 Lonstein JE. Adolescent idiopathic scoliosis. Lancet 1994; 344 (8934): 1407-1412
  • 28 Brink RC, Schlösser TPC, van Stralen M. et al. Anterior-posterior length discrepancy of the spinal column in adolescent idiopathic scoliosis-a 3D CT study. Spine J 2018; 18 (12) 2259-2265
  • 29 Cheung KMC, Wang T, Qiu GX, Luk KDK. Recent advances in the aetiology of adolescent idiopathic scoliosis. Int Orthop 2008; 32 (06) 729-734
  • 30 Fadzan M, Bettany-Saltikov J. Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop J 2017; 11 (01) 1466-1489
  • 31 Lao LF, Shen JX, Chen ZG, Wang YP, Wen XS, Qiu GX. Uncoupled neuro-osseous growth in adolescent idiopathic scoliosis? A preliminary study of 90 adolescents with whole-spine three-dimensional magnetic resonance imaging. Eur Spine J 2011; 20 (07) 1081-1086
  • 32 Somerville EW. Rotational lordosis; the development of single curve. J Bone Joint Surg Br 1952; 34-B (03) 421-427
  • 33 Kenner P, McGrath S, Woodland P. What factors influence delayed referral to spinal surgeon in adolescent idiopathic scoliosis?. Spine 2019; 44 (22) 1578-1584
  • 34 Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am 1981; 63 (05) 702-712
  • 35 McPhail GL, Ehsan Z, Howells SA. et al. Obstructive lung disease in children with idiopathic scoliosis. J Pediatr 2015; 166 (04) 1018-1021
  • 36 Murrell GA, Coonrad RW, Moorman III CT, Fitch RD. An assessment of the reliability of the Scoliometer. Spine 1993; 18 (06) 709-712
  • 37 Franko OI, Bray C, Newton PO. Validation of a scoliometer smartphone app to assess scoliosis. J Pediatr Orthop 2012; 32 (08) e72-e75
  • 38 Kuznia AL, Hernandez AK, Lee LU. Adolescent idiopathic scoliosis: common questions and answers. Am Fam Physician 2020; 101 (01) 19-23
  • 39 Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine 2012; 37 (16) 1391-1397
  • 40 Luo TD, Stans AA, Schueler BA, Larson AN. Cumulative radiation exposure with EOS imaging compared with standard spine radiographs. Spine Deform 2015; 3 (02) 144-150
  • 41 Cassar-Pullicino VN, Eisenstein SM. Imaging in scoliosis: what, why and how?. Clin Radiol 2002; 57 (07) 543-562
  • 42 Greiner KA. Adolescent idiopathic scoliosis: radiologic decision-making. Am Fam Physician 2002; 65 (09) 1817-1822
  • 43 Spiegel DA, Flynn JM, Stasikelis PJ. et al. Scoliotic curve patterns in patients with Chiari I malformation and/or syringomyelia. Spine 2003; 28 (18) 2139-2146
  • 44 Tsirikos AI, Roberts SB. Magnetic controlled growth rods in the treatment of scoliosis: safety, efficacy and patient selection. Med Devices (Auckl) 2020; 13: 75-85
  • 45 Garg B, Mehta N, Goyal A, Rangaswamy N, Upadhayay A. Variations in the number of thoracic and lumbar vertebrae in patients with adolescent idiopathic scoliosis: a retrospective, observational study. Int J Spine Surg 2021; 15 (02) 359-367
  • 46 Loder RT, Stasikelis P, Farley FA. Sagittal profiles of the spine in scoliosis associated with an Arnold-Chiari malformation with or without syringomyelia. J Pediatr Orthop 2002; 22 (04) 483-491
  • 47 Kane WJ. Scoliosis prevalence: a call for a statement of terms. Clin Orthop Relat Res 1977; (126) 43-46
  • 48 Dickson RA, Weinstein SL. Bracing (and screening)—yes or no?. J Bone Joint Surg Br 1999; 81 (02) 193-198
  • 49 Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am 1990; 72 (03) 328-333
  • 50 Propst-Proctor SL, Bleck EE. Radiographic determination of lordosis and kyphosis in normal and scoliotic children. J Pediatr Orthop 1983; 3 (03) 344-346
  • 51 Armstrong T, Ly KV, Ghahremani S, Calkins KL, Wu HH. Free-breathing 3-D quantification of infant body composition and hepatic fat using a stack-of-radial magnetic resonance imaging technique. Pediatr Radiol 2019; 49 (07) 876-888
  • 52 Nash Jr CL, Moe JH. A study of vertebral rotation. J Bone Joint Surg Am 1969; 51 (02) 223-229
  • 53 Illés TS, Lavaste F, Dubousset JF. The third dimension of scoliosis: the forgotten axial plane. Orthop Traumatol Surg Res 2019; 105 (02) 351-359
  • 54 Van Goethem J, Van Campenhout A, van den Hauwe L, Parizel PM. Scoliosis. Neuroimaging Clin N Am 2007; 17 (01) 105-115
  • 55 Smith J, King T, Weber B, Cole J, Briscoe W, Levine D. Lung function in idiopathic scoliosis: Adolescence to old age. J Bone Joint Surg Am 1974; 56-A: 440
  • 56 Sanders JO, Browne RH, Cooney TE, Finegold DN, McConnell SJ, Margraf SA. Correlates of the peak height velocity in girls with idiopathic scoliosis. Spine 2006; 31 (20) 2289-2295
  • 57 Sanders JO, Khoury JG, Kishan S. et al. Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am 2008; 90 (03) 540-553
  • 58 Wang WW, Xia CW, Zhu F. et al. Correlation of Risser sign, radiographs of hand and wrist with the histological grade of iliac crest apophysis in girls with adolescent idiopathic scoliosis. Spine 2009; 34 (17) 1849-1854
  • 59 Charles YP, Diméglio A, Canvased F, Daures JP. Skeletal age assessment from the olecranon for idiopathic scoliosis at Risser grade 0. J Bone Joint Surg Am 2007; 89 (12) 2737-2744
  • 60 Diméglio A, Charles YP, Daures JP, de Rosa V, Kaboré B. Accuracy of the Sauvegrain method in determining skeletal age during puberty. J Bone Joint Surg Am 2005; 87 (08) 1689-1696
  • 61 Cheung CJ, Zhou G-Q, Law S-Y, Lai K-L, Jiang W-W, Zheng Y-P. Freehand three-dimensional ultrasound system for assessment of scoliosis. J Orthop Translat 2015; 3 (03) 123-133
  • 62 Ilharreborde B, Dubost J, Skalli W, Mazda K. Spinal penetration index assessment in adolescent idiopathic scoliosis using EOS low-dose biplanar stereoradiography. Eur Spine J 2013; 22 (11) 2438-2444
  • 63 Gollogly S, Smith JT, Campbell RM. Determining lung volume with three-dimensional reconstructions of CT scan data: a pilot study to evaluate the effects of expansion thoracoplasty on children with severe spinal deformities. J Pediatr Orthop 2004; 24 (03) 323-328
  • 64 Lee CS, Hwang CJ, Kim NH. et al. Preoperative magnetic resonance imaging evaluation in patients with adolescent idiopathic scoliosis. Asian Spine J 2017; 11 (01) 37-43
  • 65 McKenna C, Wade R, Faria R. et al. EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess 2012; 16 (14) 1-188
  • 66 Wybier M, Bossard P. Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine 2013; 80 (03) 238-243
  • 67 Melhem E, Assi A, El Rachkidi R, Ghanem I. EOS(®) biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop 2016; 10 (01) 1-14
  • 68 Ilharreborde B, Dubousset J, Le Huec JC. Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J 2014; 23 (Suppl. 04) S397-S405
  • 69 Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine 2000; 25 (16) 2052-2063
  • 70 Presciutti SM, Karukanda T, Lee M. Management decisions for adolescent idiopathic scoliosis significantly affect patient radiation exposure. Spine J 2014; 14 (09) 1984-1990
  • 71 Pace N, Ricci L, Negrini S. A comparison approach to explain risks related to X-ray imaging for scoliosis, 2012 SOSORT award winner. Scoliosis 2013; 8 (01) 11
  • 72 Morel B, Moueddeb S, Blondiaux E. et al. Dose, image quality and spine modeling assessment of biplanar EOS micro-dose radiographs for the follow-up of in-brace adolescent idiopathic scoliosis patients. Eur Spine J 2018; 27 (05) 1082-1088
  • 73 Hui SC, Pialasse JP, Wong JY. et al. Radiation dose of digital radiography (DR) versus micro-dose x-ray (EOS) on patients with adolescent idiopathic scoliosis: 2016 SOSORT- IRSSD “John Sevastic Award” Winner in Imaging Research. Scoliosis Spinal Disord 2016; 29 (11) 46 DOI: 10.1186/s13013-016-0106-7.