Semin Thromb Hemost 2023; 49(03): 217-224
DOI: 10.1055/s-0042-1756704
Review Article

50 Years of Pediatric Hemostasis: Knowledge, Diagnosis, and Treatment

Sarina Levy-Mendelovich
1   National Hemophilia Center, Coagulation Unit and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Omri Cohen
1   National Hemophilia Center, Coagulation Unit and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Eyal Klang
2   Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
,
Gili Kenet
1   National Hemophilia Center, Coagulation Unit and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
› Author Affiliations

Abstract

Studies from the past 50 years have contributed to the expanding knowledge regarding developmental hemostasis. This is a dynamic process that begins in the fetal phase and is characterized by physiological variations in platelet counts and function, and concentrations of most coagulation factors and the native coagulation inhibitors in early life, as compared with adulthood. The developmental hemostasis studies since the 1980 to 1990s established the laboratory reference values for coagulation factors. It was only a decade or two later, that thromboelastography (TEG) or (rotational thromboelastometry [ROTEM]) as well as thrombin generation studies, provided special pediatric reference values along with the ability to evaluate clot formation and lysis. In addition, global whole blood-based clotting assays provided point of care guidance for proper transfusion support to children hospitalized in intensive care units or undergoing surgery. Although uncommon, thrombosis in children and neonates is gaining increasing recognition, typically as a secondary complication in sick children. Bleeding in children, and particularly intracerebral hemorrhage in newborns, still represent a therapeutic challenge. Notably, our review will outline the advancements in understanding developmental hemostasis and its manifestations, with respect to the pathophysiology of thrombosis and bleeding complications in young children. The changes of transfusion policy and approach to thrombophilia testing during the last decade will be mentioned. Subsequently, a brief summary of the data on anticoagulant treatments in pediatric patients will be presented. Finally, we will point out the 10 most cited articles in the field of pediatric and neonatal hemostasis.



Publication History

Article published online:
29 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kenet G, Cohen O, Bajorat T, Nowak-Göttl U. Insights into neonatal thrombosis. Thromb Res 2019; 181 (suppl 1): S33-S36
  • 2 Van den Hof MC, Nicolaides KH. Platelet count in normal, small, and anemic fetuses. Am J Obstet Gynecol 1990; 162 (03) 735-739
  • 3 Manco-Johnson MJ. Development of hemostasis in the fetus. Thromb Res 2005; 115 (Suppl. 01) 55-63
  • 4 Wiedmeier SE, Henry E, Sola-Visner MC, Christensen RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009; 29 (02) 130-136
  • 5 Strauss T, Sidlik-Muskatel R, Kenet G. Developmental hemostasis: primary hemostasis and evaluation of platelet function in neonates. Semin Fetal Neonatal Med 2011; 16 (06) 301-304
  • 6 Bankowski E, Niewiarowski S, Galasinski W. Platelet aggregation by human collagen in relation to its age. Gerontologia 1967; 13 (04) 219-226
  • 7 Corby DG, Zuck TF. Newborn platelet dysfunction: a storage pool and release defect. Thromb Haemost 1976; 36 (01) 200-207
  • 8 Stuart MJ, Dusse J, Clark DA, Walenga RW. Differences in thromboxane production between neonatal and adult platelets in response to arachidonic acid and epinephrine. Pediatr Res 1984; 18 (09) 823-826
  • 9 Schlegel N, Bardet V, Kenet G, Muntean W, Zieger B, Nowak-Göttl U. Working Group on Standardisation in Perinatal and Pediatric Hemostasis. Diagnostic and therapeutic considerations on inherited platelet disorders in neonates and children. Klin Padiatr 2010; 222 (03) 209-214
  • 10 Kühne T, Imbach P. Neonatal platelet physiology and pathophysiology. Eur J Pediatr 1998; 157 (02) 87-94
  • 11 Michelson AD. Platelet function in the newborn. Semin Thromb Hemost 1998; 24 (06) 507-512
  • 12 Israels SJ. Diagnostic evaluation of platelet function disorders in neonates and children: an update. Semin Thromb Hemost 2009; 35 (02) 181-188
  • 13 Andrew M, Paes B, Milner R. et al. Development of the human coagulation system in the full-term infant. Blood 1987; 70 (01) 165-172
  • 14 Andrew M, Paes B, Milner R. et al. Development of the human coagulation system in the healthy premature infant. Blood 1988; 72 (05) 1651-1657
  • 15 Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood 1992; 80 (08) 1998-2005
  • 16 Manco-Johnson MJ, Spedale S, Peters M. et al. Identification of a unique form of protein C in the ovine fetus: developmentally linked transition to the adult form. Pediatr Res 1995; 37 (03) 365-372
  • 17 Manco-Johnson MJ, Jacobson LJ, Hacker MR, Townsend SF, Murphy J, Hay Jr W. Development of coagulation regulatory proteins in the fetal and neonatal lamb. Pediatr Res 2002; 52 (04) 580-588
  • 18 Reverdiau-Moalic P, Delahousse B, Body G, Bardos P, Leroy J, Gruel Y. Evolution of blood coagulation activators and inhibitors in the healthy human fetus. Blood 1996; 88 (03) 900-906
  • 19 Strauss T, Elisha N, Ravid B. et al. Activity of Von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol Dis 2017; 67: 14-17
  • 20 Perlman M, Dvilansky A. Blood coagulation status of small-for-dates and postmature infants. Arch Dis Child 1975; 50 (06) 424-430
  • 21 Beverley DW, Inwood MJ, Chance GW, Schaus M, O'Keefe B. ‘Normal’ haemostasis parameters: a study in a well-defined inborn population of preterm infants. Early Hum Dev 1984; 9 (03) 249-257
  • 22 Salonvaara M, Riikonen P, Kekomäki R. et al. Effects of gestational age and prenatal and perinatal events on the coagulation status in premature infants. Arch Dis Child Fetal Neonatal Ed 2003; 88 (04) F319-F323
  • 23 Monagle P, Barnes C, Ignjatovic V. et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost 2006; 95 (02) 362-372
  • 24 Attard C, van der Straaten T, Karlaftis V, Monagle P, Ignjatovic V. Developmental hemostasis: age-specific differences in the levels of hemostatic proteins. J Thromb Haemost 2013; 11 (10) 1850-1854
  • 25 Hartert H. Blood coagulation studies using thromboelastography, a new evaluation technique. Klin Wochenschr 1948; 26: 577-583
  • 26 Spiel AO, Mayr FB, Firbas C, Quehenberger P, Jilma B. Validation of rotation thromboelastography in a model of systemic activation of fibrinolysis and coagulation in humans. J Thromb Haemost 2006; 4 (02) 411-416
  • 27 Hrodek O, Hermansky F. Thromboelastographic study in the newborn. Ann Paediatr 1960; 194: 246-254
  • 28 Miller BE, Bailey JM, Mancuso TJ. et al. Functional maturity of the coagulation system in children: an evaluation using thrombelastography. Anesth Analg 1997; 84 (04) 745-748
  • 29 Strauss T, Levy-Shraga Y, Ravid B. et al. Clot formation of neonates tested by thromboelastography correlates with gestational age. Thromb Haemost 2010; 103 (02) 344-350
  • 30 Wagner ML, Johnston M, Jenkins T, Palumbo JS, Rymeski BA. Use of thromboelastography in children on extracorporeal membrane oxygenation. J Pediatr Surg 2022; 57 (06) 1056-1061
  • 31 Hemker HC, Willems GM, Béguin S. A computer assisted method to obtain the prothrombin activation velocity in whole plasma independent of thrombin decay processes. Thromb Haemost 1986; 56 (01) 9-17
  • 32 Mitchell L, Hoogendoorn H, Giles AR, Vegh P, Andrew M. Increased endogenous thrombin generation in children with acute lymphoblastic leukemia: risk of thrombotic complications in L'Asparaginase-induced antithrombin III deficiency. Blood 1994; 83 (02) 386-391
  • 33 Muntean W, Leschnik B, Baier K, Cvirn G, Gallistl S. In vivo thrombin generation in neonates. J Thromb Haemost 2004; 2 (11) 2071-2072
  • 34 Thomas KA, Shea SM, Saini A, Muszynski JA, Spinella PC. Correlation between thrombin generation, standard coagulation assays, and viscoelastic assays for hemostatic assessment in critically ill children. J Appl Lab Med 2022; 7 (05) 1108-1119
  • 35 Barg AA, Avishai E, Budnik I. et al. Emicizumab prophylaxis among infants and toddlers with severe hemophilia A and inhibitors-a single-center cohort. Pediatr Blood Cancer 2019; 66 (11) e27886
  • 36 Revel-Vilk S. Clinical and laboratory assessment of the bleeding pediatric patient. Semin Thromb Hemost 2011; 37 (07) 756-762
  • 37 Townsend CW. The hemorrhagic disease of the newborn. Arch Pediatr 1894; 11: 559-565
  • 38 Lane PA, Hathaway WE. Vitamin K in infancy. J Pediatr 1985; 106 (03) 351-359
  • 39 Sutor AH. Vitamin K deficiency bleeding in infants and children. Semin Thromb Hemost 1995; 21 (03) 317-329
  • 40 Hand I, Noble L, Abrams SA. Vitamin K and the newborn infant. Pediatrics 2022; 149 (03) e2021056036
  • 41 Linder N, Haskin O, Levit O. et al. Risk factors for intraventricular hemorrhage in very low birth weight premature infants: a retrospective case-control study. Pediatrics 2003; 111 (5 Pt 1): e590-e595
  • 42 Leijser LM, de Vries LS. Preterm brain injury: Germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. Handb Clin Neurol 2019; 162: 173-199
  • 43 Burrows RF, Caco CC, Kelton JG. Neonatal alloimmune thrombocytopenia: spontaneous in utero intracranial hemorrhage. Am J Hematol 1988; 28 (02) 98-102
  • 44 Davenport P, Sola-Visner M. Hemostatic challenges in neonates. Front Pediatr 2021; 9: 627715
  • 45 Handley SC, Passarella M, Lee HC, Lorch SA. Incidence trends and risk factor variation in severe intraventricular hemorrhage across a population based cohort. J Pediatr 2018; 200: 24-29 .e3
  • 46 Escobar MA. Advances in the treatment of inherited coagulation disorders. Haemophilia 2013; 19 (05) 648-659
  • 47 Curley A, Stanworth SJ, Willoughby K. et al; PlaNeT2 MATISSE Collaborators. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019; 380 (03) 242-251
  • 48 Clifford SH, Butler AM. et al. Renal-vein thrombosis in newborn infant. N Engl J Med 1950; 242 (03) 100-104
  • 49 Lau KK, Stoffman JM, Williams S. et al; Canadian Pediatric Thrombosis and Hemostasis Network. Neonatal renal vein thrombosis: review of the English-language literature between 1992 and 2006. Pediatrics 2007; 120 (05) e1278-e1284
  • 50 Monagle P, Cuello CA, Augustine C. et al. American Society of Hematology 2018 Guidelines for management of venous thromboembolism: treatment of pediatric venous thromboembolism. Blood Adv 2018; 2 (22) 3292-3316
  • 51 Chan A, Lensing AWA, Kubitza D. et al. Clinical presentation and therapeutic management of venous thrombosis in young children: a retrospective analysis. Thromb J 2018; 16: 29
  • 52 Gauderer MW, Stellato TA. Subclavian Broviac catheters in children–technical considerations in 146 consecutive placements. J Pediatr Surg 1985; 20 (04) 402-405
  • 53 Mahajerin A, Branchford BR, Amankwah EK. et al. Hospital-associated venous thromboembolism in pediatrics: a systematic review and meta-analysis of risk factors and risk-assessment models. Haematologica 2015; 100 (08) 1045-1050
  • 54 Goldenberg NA, Kittelson JM, Abshire TC. et al; Kids-DOTT Trial Investigators and the ATLAS Group. Effect of anticoagulant therapy for 6 weeks vs 3 months on recurrence and bleeding events in patients younger than 21 years of age with provoked venous thromboembolism: the Kids-DOTT randomized clinical trial. JAMA 2022; 327 (02) 129-137
  • 55 Marlar RA, Montgomery RR, Broekmans AW. Diagnosis and treatment of homozygous protein C deficiency. Report of the working party on homozygous protein c deficiency of the subcommittee on protein C and protein S, International Committee on Thrombosis and Haemostasis. J Pediatr 1989; 114 (4 Pt 1): 528-534
  • 56 de Kleijn ED, de Groot R, Hack CE. et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med 2003; 31 (06) 1839-1847
  • 57 Manco-Johnson MJ, Bomgaars L, Palascak J. et al. Efficacy and safety of protein C concentrate to treat purpura fulminans and thromboembolic events in severe congenital protein C deficiency. Thromb Haemost 2016; 116 (01) 58-68
  • 58 Limperger V, Franke A, Kenet G. et al. Clinical and laboratory characteristics of paediatric and adolescent index cases with venous thromboembolism and antithrombin deficiency. An observational multicentre cohort study. Thromb Haemost 2014; 112 (03) 478-485
  • 59 Young G, Albisetti M, Bonduel M. et al. Impact of inherited thrombophilia on venous thromboembolism in children: a systematic review and meta-analysis of observational studies. Circulation 2008; 118 (13) 1373-1382
  • 60 van Ommen CH, Nowak-Göttl U. Inherited thrombophilia in pediatric venous thromboembolic disease: why and who to test. Front Pediatr 2017; 5: 50
  • 61 Lehman LL, Rivkin MJ. Perinatal arterial ischemic stroke: presentation, risk factors, evaluation, and outcome. Pediatr Neurol 2014; 51 (06) 760-768
  • 62 Kenet G, Lütkhoff LK, Albisetti M. et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation 2010; 121 (16) 1838-1847
  • 63 Lehman LL, Beaute J, Kapur K. et al. Workup for perinatal stroke does not predict recurrence. Stroke 2017; 48 (08) 2078-2083
  • 64 Curtis C, Mineyko A, Massicotte P. et al. Thrombophilia risk is not increased in children after perinatal stroke. Blood 2017; 129 (20) 2793-2800
  • 65 Young G. How I treat pediatric venous thromboembolism. Blood 2017; 130 (12) 1402-1408
  • 66 Klein TE, Altman RB, Eriksson N. et al; International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009; 360 (08) 753-764
  • 67 Sutor AH, Chan AK, Massicotte P. Low-molecular-weight heparin in pediatric patients. Semin Thromb Hemost 2004; 30 (suppl 1): 31-39
  • 68 Klaassen ILM, Sol JJ, Suijker MH, Fijnvandraat K, van de Wetering MD, Heleen van Ommen C. Are low-molecular-weight heparins safe and effective in children? A systematic review. Blood Rev 2019; 33: 33-42
  • 69 Ko RH, Michieli C, Lira JL, Young G. FondaKIDS II: long-term follow-up data of children receiving fondaparinux for treatment of venous thromboembolic events. Thromb Res 2014; 134 (03) 643-647
  • 70 Shen X, Wile R, Young G. FondaKIDS III: a long-term retrospective cohort study of fondaparinux for treatment of venous thromboembolism in children. Pediatr Blood Cancer 2020; 67 (08) e28295
  • 71 Van Cott EM, Roberts AJ, Dager WE. Laboratory monitoring of parenteral direct thrombin inhibitors. Semin Thromb Hemost 2017; 43 (03) 270-276
  • 72 Madabushi R, Cox DS, Hossain M. et al. Pharmacokinetic and pharmacodynamic basis for effective argatroban dosing in pediatrics. J Clin Pharmacol 2011; 51 (01) 19-28
  • 73 Hamzah M, Jarden AM, Ezetendu C, Stewart R. Evaluation of bivalirudin as an alternative to heparin for systemic anticoagulation in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med 2020; 21 (09) 827-834
  • 74 Male C, Lensing AWA, Palumbo JS. et al; EINSTEIN-Jr Phase 3 Investigators. Rivaroxaban compared with standard anticoagulants for the treatment of acute venous thromboembolism in children: a randomised, controlled, phase 3 trial. Lancet Haematol 2020; 7 (01) e18-e27
  • 75 Connor P, Sánchez van Kammen M, Lensing AWA. et al. Safety and efficacy of rivaroxaban in pediatric cerebral venous thrombosis (EINSTEIN-Jr CVT). Blood Adv 2020; 4 (24) 6250-6258
  • 76 Halton J, Brandão LR, Luciani M. et al; DIVERSITY Trial Investigators. Dabigatran etexilate for the treatment of acute venous thromboembolism in children (DIVERSITY): a randomised, controlled, open-label, phase 2b/3, non-inferiority trial. Lancet Haematol 2021; 8 (01) e22-e33
  • 77 van Ommen CH, Albisetti M, Chan AK. et al. The Edoxaban Hokusai VTE PEDIATRICS study: an open-label, multicenter, randomized study of edoxaban for pediatric venous thromboembolic disease. Res Pract Thromb Haemost 2020; 4 (05) 886-892
  • 78 Bhatt MD, Portman MA, Berger F. et al. ENNOBLE-ATE trial: an open-label, randomised, multi-centre, observational study of edoxaban for children with cardiac diseases at risk of thromboembolism. Cardiol Young 2021; 31 (08) 1213-1219
  • 79 Payne RM, Burns KM, Glatz AC. et al; Pediatric Heart Network Investigators. A multi-national trial of a direct oral anticoagulant in children with cardiac disease: design and rationale of the Safety of ApiXaban On Pediatric Heart disease On the preventioN of Embolism (SAXOPHONE) study. Am Heart J 2019; 217: 52-63
  • 80 Witmer C, Raffini L. Treatment of venous thromboembolism in pediatric patients. Blood 2020; 135 (05) 335-343